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Preliminaries Group Actions and Equivalence Relations

Definition 1.1

Recall that a countably infinite group I' belongs to the class QHeg if it
admits

(i) m: T — U(H) a unitary representation which is weakly contained in
the left regular representation;

(i) ¢: T — H a proper map (i.e. [{g €T: ||c(g)]| < R}| < oo for every
R > 0) satisfying

sup [|c(gxh) — mg(c(x))| <oo Vg, heT.
xerlr
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Preliminaries Group Actions and Equivalence Relations

Definition 1.2

@ An action ' ~ (X, p) is non-singular if (g - A) = 0 < u(A) =0 for
every g € and A C X.

o Let R = R(I' ~ X) be the equivalence relation generated by such a
non-singular action. We say it is recurrent if for every Borel subset
W c X with u(W) > 0, and for p-almost every x € W, the
intersection W N {y: (x,y) € R} is infinite. Equivalently, for
p-almost every x € W, the orbit I - x returns to W infinitely often.
This is also equivalent to saying L°°(X) x I' has no type / direct
summand.

e We say R is decomposable if (X, p) = (X1, p1) X (X2, p2) and there
are recurrent non-singular equivalence relations S; on (X, i) such
that (x,y) € R iff x = (x1,x2),y = (y1,y2) € X1 x X with
(xi,yi) € Sifori=1,2,ie. R=381 xS».
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Preliminaries Type lll von Neumann Algebras

@ Let (M, ) be a von Neumann algebra together with a faithful normal
state.!

see Takesaki [5] for full treatment
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Preliminaries Type lll von Neumann Algebras

@ Let (M, ) be a von Neumann algebra together with a faithful normal
state.!

o Let (Hy,,mp,1,) be the GNS construction.

@ 7),(x) = nu(x*) for x € M extends to a densely defined unbounded
operator S on H,,.

see Takesaki [5] for full treatment
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Preliminaries Type lll von Neumann Algebras

@ Let (M, ) be a von Neumann algebra together with a faithful normal
state.!

o Let (Hy,,mp,1,) be the GNS construction.

@ 7),(x) = nu(x*) for x € M extends to a densely defined unbounded
operator S on H,,.

1
e Letting S = JAZ be the polar decomposition, we define {o{ };cr, the
modular automorphism group of ¢, by of (x) = ALxA™.

see Takesaki [5] for full treatment
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Preliminaries Type lll von Neumann Algebras

@ Let (M, ) be a von Neumann algebra together with a faithful normal
state.!

o Let (Hy,,mp,1,) be the GNS construction.

@ 7),(x) = nu(x*) for x € M extends to a densely defined unbounded
operator S on H,,.

1
e Letting S = JAZ be the polar decomposition, we define {o{ };cr, the
modular automorphism group of ¢, by of (x) = ALxA™.
@ Define a representation 7, of M on L2(R,H@), the space of square
integrable H-valued functions by

(o (x)8)(s) = ™ (07 5(x)) £(5),

and let R act via translation: (A(t)§)(s) = &(s — t).

see Takesaki [5] for full treatment
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Preliminaries Type lll von Neumann Algebras

@ The representations {m,, A} are covariant:

A(t)mo(x) = 7o (07 (x)) A(2).
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Preliminaries Type lll von Neumann Algebras

@ The representations {m,, A} are covariant:
A(t)mo(x) = 7o (07 (x)) A(2).

@ The crossed product M x, R is the von Neumann algebra generated
by 7o(M) U A(R) C B(L3(R,H,)). Note that (A\(s))scr generates a
copy of L(R) inside M x, R.
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Preliminaries Type lll von Neumann Algebras

@ The representations {m,, A} are covariant:
A(t)mo(x) = 7o (07 (x)) A(2).

@ The crossed product M x, R is the von Neumann algebra generated
by 7o(M) U A(R) C B(L3(R,H,)). Note that (A\(s))scr generates a
copy of L(R) inside M x, R.

@ There exists a dual weight $ on M x, R which is a normal semifinite
faithful weight on M x, R whose modular automorphism group

(O'(’D> satisfies
teR

of (1o(x)) = mo(cf(x))  forall x € M,

o?(A\(s)) = A(s)  forall s € R.
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Preliminaries Type lll von Neumann Algebras

@ The dual action (67),cp on M x, R is given by

0f (75(x)) = o (x) for all x € M,
07 (\(s)) = e™\(s)  forall s€R.
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Preliminaries Type lll von Neumann Algebras

@ The dual action (67),cp on M x, R is given by

0f (75(x)) = o (x) for all x € M,
07 (\(s)) = e™\(s)  forall s€R.
@ Let h, be the unique nonsingular positive selfadjoint operator
affiliated with L(R) C M i, R such that h:j = Ap(s) forall s € R,

then Tr, 1= @(h;l-) defines a semifinite faithful normal trace on
M %, R and the dual action 6% scales the trace:

Trp 067 = e'Tr, for all t € R.

Moreover, Tr,, is semifinite on L(R) and is preserved by the canonical
faithful normal conditional expectation Ej(g) defined by

Er(r)(ma(x)A(s)) = ¢(x)A(s).
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Preliminaries Type lll von Neumann Algebras

@ Connes’ Radon-Nikodym cocycle theorem implies the crossed product
with respect to ¢ can be canonically mapped to the crossed product
with respect to any other faithful normal state on M.
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@ Connes’ Radon-Nikodym cocycle theorem implies the crossed product
with respect to ¢ can be canonically mapped to the crossed product
with respect to any other faithful normal state on M.

@ Hence we abstractly consider the continuous core (c(M), 0, Tr), where
c(M) is a von Neumann algebra with a faithful normal semifinite
trace Tr and a trace-scaling action of R, 6.
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@ Connes’ Radon-Nikodym cocycle theorem implies the crossed product
with respect to ¢ can be canonically mapped to the crossed product
with respect to any other faithful normal state on M.

@ Hence we abstractly consider the continuous core (c(M), 0, Tr), where
c(M) is a von Neumann algebra with a faithful normal semifinite
trace Tr and a trace-scaling action of R, 6.

@ Given a faithful normal state ¢ on M, there is a canonical surjective
*-homomorphism I, : M x, R — ¢(M) such that

Myo06? =00, Tr, = Troll, My(7o(x)) = x Vx € M.
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Preliminaries Type lll von Neumann Algebras

@ Connes’ Radon-Nikodym cocycle theorem implies the crossed product
with respect to ¢ can be canonically mapped to the crossed product
with respect to any other faithful normal state on M.

@ Hence we abstractly consider the continuous core (c(M), 0, Tr), where
c(M) is a von Neumann algebra with a faithful normal semifinite
trace Tr and a trace-scaling action of R, 6.

@ Given a faithful normal state ¢ on M, there is a canonical surjective
*-homomorphism I, : M x, R — ¢(M) such that

Myo06? =00, Tr, = Troll, My(7o(x)) = x Vx € M.

o Takesaki's duality theorem implies c(M) xy R =2 M@B(L3(R)). In
particular, M is amenable if and only if ¢(M) is amenable.
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Preliminaries Maharam Extension

@ For a nonsingular action ' ~ (X, i) on a standard measure space,
the Maharam extension I ~ (X x R, m) is given by

g ()= (gm0 (L2509 ).

and dm = du x etdt. This action is m-preserving, although m is an
infinite measure.
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g ()= (gm0 (L2509 ).

and dm = du x etdt. This action is m-preserving, although m is an
infinite measure.
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Preliminaries Maharam Extension

@ For a nonsingular action ' ~ (X, i) on a standard measure space,
the Maharam extension I ~ (X x R, m) is given by

g ()= (gm0 (L2509 ).

and dm = du x etdt. This action is m-preserving, although m is an
infinite measure.

o c(L(X)xT)=L®(XxR)xT.

@ In terms of equivalence relations, if R = R(I' ~ X) and
L(R) = L*°(X) x T and if we denote c(R) = R(I' ~ X x R) then
¢(L(R)) = L(c(R)).
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Main Theorem

Theorem 2.1

Let ' be any group in the class QH g and I ~ (X, ) any free
nonsingular action on a standard measure space. Let V C X be a
non-negligible subset. Every nonamenable recurrent subequivalence
relation of R(I' ~ X) |y is indecomposable.
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Lemmata Intertwining by bimodules

Theorem 3.1

Let M be any o-finite von Neumann algebra. Let A C 1,M14 and
B Cc 1gM1g be von Neumann subalgebras such that B is finite and with
expectation Eg: 1gM1g — B. The following are equivalent:

(1) There exist n > 1, a possibly nonunital normal x-homomorphism
m: A— M,(B) and a nonzero partial isometry v € My ,(1aM1g)
such that av = vr(a) for all a € A.

(2) There is no net of unitaries (w;) C U(A) such that Eg(x*w;y) — 0
x-strongly for all x,y € 1,M1p.
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Lemmata Intertwining by bimodules

Proof of (2) = (1).
e Fix faithful normal tracial state 7 on B and define ¢(x) = 7(Eg(x))
for x € 1gM1p, extend to faithful normal positive functional on M.
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Proof of (2) = (1).
e Fix faithful normal tracial state 7 on B and define ¢(x) = 7(Eg(x))
for x € 1gM1p, extend to faithful normal positive functional on M.
e Denote H := J1gJL?(M, ), Mz is faithfully represented on H where
z is central support of 1g in M. Let eg denote the orthogonal
projection of H onto L?(B,7) C H.
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Lemmata Intertwining by bimodules

Proof of (2) = (1).

e Fix faithful normal tracial state 7 on B and define ¢(x) = 7(Eg(x))
for x € 1gM1p, extend to faithful normal positive functional on M.

e Denote H := J1gJL?(M, ), Mz is faithfully represented on H where
z is central support of 1g in M. Let eg denote the orthogonal
projection of H onto L?(B,7) C H.

e Consider N := B(H) N (JBJ)', and realize that the faithful trace 7 on
B implies there is a canonical faithful normal semifinite trace Tr on N/
satisfying Tr(TT*) = 7(T*T) for all bounded right B-linear maps
T:L%(B,7) — H. Also, eg € N with Tr(eg) = 1.
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Lemmata Intertwining by bimodules

Proof of (2) = (1).

e Fix faithful normal tracial state 7 on B and define ¢(x) = 7(Eg(x))
for x € 1gM1p, extend to faithful normal positive functional on M.

e Denote H := J1gJL?(M, ), Mz is faithfully represented on H where
z is central support of 1g in M. Let eg denote the orthogonal
projection of H onto L?(B,7) C H.

e Consider N := B(H) N (JBJ)', and realize that the faithful trace 7 on
B implies there is a canonical faithful normal semifinite trace Tr on N/
satisfying Tr(TT*) = 7(T*T) for all bounded right B-linear maps
T:L%(B,7) — H. Also, eg € N with Tr(eg) = 1.

@ Regard Mz as a von Neumann subalgebra of NV, since it acts
faithfully on .
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Lemmata Intertwining by bimodules

Proof of (2) = (1).
@ On bounded subsets of B, strong* topology coincides with

|| - [|[>-topology. So (2) implies 36 > 0 and a finite subset 7 C 14M1p
such that

> IEs(x*wy)l3 =6 forall w € U(A).
x,yeF
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Lemmata Intertwining by bimodules

Proof of (2) = (1).
@ On bounded subsets of B, strong* topology coincides with

|| - ||2-topology. So (2) implies 30 > 0 and a finite subset F C 14M1pg
such that

> IEs(x*wy)l3 =6 forall w € U(A).
x,yeF

@ By considering { = )" _ » xepx* € N, taking minimal element of
|| - ||l2,T-norm in the weak closure of convex hull of
{w&w*: w € U(A)}, and taking a suitable spectral projection we can
find a nonzero projection p € A'N14N1,4 such that Tr(p) < occ.
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Lemmata Intertwining by bimodules

Proof of (2) = (1).
@ On bounded subsets of B, strong* topology coincides with
|| - ||2-topology. So (2) implies 30 > 0 and a finite subset F C 14M1pg
such that

> IEs(x*wy)l3 =6 forall w € U(A).
x,yeF

@ By considering { = )" _ » xepx* € N, taking minimal element of
|| - ||l2,T-norm in the weak closure of convex hull of
{w&w*: w € U(A)}, and taking a suitable spectral projection we can
find a nonzero projection p € A'N14N1,4 such that Tr(p) < occ.

@ p#H is a nonzero A — B-bimodule with finite dimension over B. Can
find I C pH a nonzero A — B-subbimodule which is finitely generate
as a right B-module.
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Lemmata Intertwining by bimodules

Proof of (2) = (1).
@ Let n>1 and g € M,(B) a nonzero projection such that there exists
a right B-module isomorphism ¢: Kg — (qL?(B)®")g
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Lemmata Intertwining by bimodules

Proof of (2) = (1).
@ Let n>1 and g € M,(B) a nonzero projection such that there exists
a right B-module isomorphism ¢: Kg — (qL?(B)®")g.
@ Let m: A — gM,(B)q be the unital *-homomorphism such that
P(a¢) = m(a)yY(¢) for all a € Aand all ¢ € K.

Brent Nelson (UCLA) Indecomposability of free nonsingular action: March 1, 2013 13 /30



Lemmata Intertwining by bimodules

Proof of (2) = (1).
@ Let n>1 and g € M,(B) a nonzero projection such that there exists
a right B-module isomorphism ¢: Kg — (qL?(B)®")g.
@ Let m: A — gM,(B)q be the unital *-homomorphism such that
P(a¢) = m(a)yY(¢) for all a € Aand all ¢ € K.
e Take & € K with ¥(&) = q(0,...,0,15,0,...,0). Then
€ = (&) € My »(C) ® K satisfies a§ = Jm(a)*JE for all a € A.
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Lemmata Intertwining by bimodules

Proof of (2) = (1).

@ Let n>1 and g € M,(B) a nonzero projection such that there exists
a right B-module isomorphism ¢: Kg — (qL?(B)®")g.

@ Let m: A — gM,(B)q be the unital *-homomorphism such that
P(a¢) = m(a)yY(¢) for all a € Aand all ¢ € K.

e Take & € K with ¥(&) = q(0,...,0,15,0,...,0). Then
€ = (&) € My »(C) ® K satisfies a§ = Jm(a)*JE for all a € A.

@ The polar decomposition of £ in the standard representation of
M,(M) yields the desired partial isometry v.
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Lemmata Intertwining by bimodules

Proof of (2) = (1).

@ Let n>1 and g € M,(B) a nonzero projection such that there exists
a right B-module isomorphism ¢: Kg — (qL?(B)®")g.

@ Let m: A — gM,(B)q be the unital *-homomorphism such that
P(a¢) = m(a)yY(¢) for all a € Aand all ¢ € K.

e Take & € K with ¥(&;) = q(0,...,0,15,0,...,0). Then
€ = (&) € My »(C) ® K satisfies a§ = Jm(a)*JE for all a € A.

@ The polar decomposition of £ in the standard representation of
M,(M) yields the desired partial isometry v.

Definition 3.2
If either of the two equivalent conditions in Theorem 3.1 holds, then we
say A embeds into B inside M and denote A <, B.
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Lemmata

Lemma 3.3

Let M be a von Neumann algebra with a separable predual. Let

A C 14M14 and B C M be unital von Neumann subalgebras with
expectations. Assume that B is abelian and that for every nonzero
projection p € A, we have pAp Ay B. Then there exists a diffuse abelian
x-subalgebra D C A with expectation such that D Ay B.
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Let M be a von Neumann algebra with a separable predual. Let

A C 14M14 and B C M be unital von Neumann subalgebras with
expectations. Assume that B is abelian and that for every nonzero
projection p € A, we have pAp Ay B. Then there exists a diffuse abelian
x-subalgebra D C A with expectation such that D Ay B.
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Lemmata

Lemma 3.3

Let M be a von Neumann algebra with a separable predual. Let

A C 14M14 and B C M be unital von Neumann subalgebras with
expectations. Assume that B is abelian and that for every nonzero
projection p € A, we have pAp Ay B. Then there exists a diffuse abelian
x-subalgebra D C A with expectation such that D Ay B.

Proof.
e Find z € Z(A) such that Az is type | and A(14 — z) has no type |
direct summand.
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Lemmata

Lemma 3.3

Let M be a von Neumann algebra with a separable predual. Let

A C 14M14 and B C M be unital von Neumann subalgebras with
expectations. Assume that B is abelian and that for every nonzero
projection p € A, we have pAp Ay B. Then there exists a diffuse abelian
x-subalgebra D C A with expectation such that D Ay B.

Proof.
e Find z € Z(A) such that Az is type | and A(14 — z) has no type |
direct summand.
@ Fix Dy C Az unital maximal abelian x-subalgebra with expectation, it
follows that Dy Ay B.
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Lemmata

Proof.

@ In A(14 — z), inductively construct an increasing sequence (Q,) of
unital abelian finite dimensional x-subalgebras of A(14 — z) and
unitaries w, € Q, such that ||Eg(x/wixj) 2,706, < n~t, where
{xi}ien C (14 — z)M is dense with respect to the || - ||2.-og5-norm.
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@ In A(14 — z), inductively construct an increasing sequence (Q,) of
unital abelian finite dimensional x-subalgebras of A(14 — z) and
unitaries w, € Q, such that ||Eg(x/wixj) 2,706, < n~t, where
{xi}ien C (14 — z)M is dense with respect to the || - ||2.-og5-norm.

o Set D, = \/n Qn, then Dq ﬁM B.
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Lemmata

Proof.

@ In A(14 — z), inductively construct an increasing sequence (Q,) of
unital abelian finite dimensional x-subalgebras of A(14 — z) and
unitaries w, € Q, such that ||Eg(x/wixj) 2,706, < n~t, where
{xi}ien C (14 — z)M is dense with respect to the || - ||2.-og5-norm.

o Set D, = \/n Qn, then Dq ﬁM B.

@ D = Dy ® Ds is a unital diffuse abelian x-subalgebra with expectation
such that D Ay B.

Ol
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Lemmata Amenable equivalence relations

Definition 3.4
An equivalence relation R is amenable if there exists a state Q on L*°(R)
satisfying

Q(F) :/ F(x) du(x)  forall F € L°(X), and
X
Qu()Fu(e)’) = QF)  forall v € [R], F € L®(R)

Lemma 3.5

A countable pmp equivalence relation R is amenable if and only if for all
non-negligible ‘R-invariant measurable subsets U C X and all
P1,...,%n € [R], we have

n

> (@) 1y ® Ju(Pr)luJ

k=1

=n. (1)

min
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Lemmata Amenable equivalence relations

Proof.

@ By a lemma in [3], (1) is equivalent to the existence of a state Q2 on
L>*(R) satisfying

Q(F) = / F(x) du(x)  forall F € L*(X), and
X
Qu()Fu(y)*) = Q(F)  forall ¢ € [R], F € L°(R)
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Lemmata Amenable equivalence relations

Proof.

@ By a lemma in [3], (1) is equivalent to the existence of a state Q2 on
L>*(R) satisfying

Q(F) = / F(x) du(x)  forall F € L*(X), and
X
Qu()Fu(y)*) = Q(F)  forall ¢ € [R], F € L°(R)

@ So it suffices to show Q(1y) = (V) for any V C X. Define mean
V(V):=Q(1y).
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SRl "rercble cquivalence reations
e Case 1: R is homogeneous type I, 1 < n < oc.

«40>» «F»r « =) « » Q>



Lemmata Amenable equivalence relations

Proof.
e Case 1: R is homogeneous type |, 1 < n < co.

e 3V C X with u(V) =1, and ¢1,..., ¢, € [R] such that for a.e.
x € V, {1(x),...,¥n(x)} is equivalence class of x.
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Lemmata Amenable equivalence relations

Proof.

e Case 1: R is homogeneous type |, 1 < n < co.

e 3V C X with u(V) =1, and ¢1,..., ¢, € [R] such that for a.e.

x € V, {1(x),...,¥n(x)} is equivalence class of x.
e For U C V, 9x(U) are disjoint and union is R-invariant so:

nu(U) = (kszl (U ) (kL:Jl wk(U))

n

=D V(W (V)) = n¥(V)
k=1
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Lemmata Amenable equivalence relations

Proof.
e Case 1: R is homogeneous type |, 1 < n < co.
e 3V C X with u(V) =1, and ¢1,..., ¢, € [R] such that for a.e.
x € V, {1(x),...,¥n(x)} is equivalence class of x.
e For U C V, 9x(U) are disjoint and union is R-invariant so:

nu(U) = (U (U ) (U wk(U))

k=1 k=1
n

V(9 (U)) = n¥(U)

k=1

@ Then by ¢y-invariance, u(U) = W(U) for all U C ¢(V), hence for
all U C X by finite additivity.
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SRl "rercble cquivalence reations
e Case 2: R is homogeneous of type Il;.

DA

u]
v
a
8]
a
i
v
it
-
it



Lemmata Amenable equivalence relations

Proof.
e Case 2: R is homogeneous of type Il;.

o Let E: L>®°(X) — L>=(X)R be trace preserving conditional
expectation.
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Lemmata Amenable equivalence relations

Proof.
e Case 2: R is homogeneous of type Il;.
o Let E: L>®°(X) — L>=(X)R be trace preserving conditional
expectation.
o Can write L>(X)® = L°°(Y,n) with (Y,n) a standard probability
space, and can write (X, ) as a direct integral over (Y,n) of a

measurable field of standard probability spaces isomorphic to
([0,1], dx) (as R is type II1).
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Lemmata Amenable equivalence relations

Proof.

e Case 2: R is homogeneous of type Il;.

o Let E: L>®°(X) — L>=(X)R be trace preserving conditional
expectation.

o Can write L>(X)® = L°°(Y,n) with (Y,n) a standard probability
space, and can write (X, ) as a direct integral over (Y,n) of a
measurable field of standard probability spaces isomorphic to
([0,1], dx) (as R is type II1).

@ There is an isomorphism of probability spaces 6: [0, 1] x Y — X such
that F(0(t,y)) = F(y) for aII F € LOO(Y) = LOO(X) and a.e.
(t,y) €[0,1] x Y. Also (E( fo ) dt for all
F e Ll*(X)and ae. ye€ Y
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Lemmata Amenable equivalence relations

Proof.
e Given G: Y — [0, 1] define

W(G) :={(t,y): 0<t< G(y)} C[0,1] x Y,

and let V(G) = 6OV(G)).
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Lemmata Amenable equivalence relations

Proof.
e Given G: Y — [0, 1] define

W(G) :={(t,y): 0<t< G(y)} C[0,1] x Y,

and let V(G) = 6OV(G)).
@ For measurable U C X, if G = E(1y) then E(1y¢)) = E(1y) and
hence 3¢y € [R] with ¥(U) = V(G).

Brent Nelson (UCLA) Indecomposability of free nonsingular action: March 1, 2013 20 / 30



Lemmata Amenable equivalence relations

Proof.
e Given G: Y — [0, 1] define

W(G) :={(t,y): 0<t< G(y)} C[0,1] x Y,

and let V(G) = 6OV(G)).

@ For measurable U C X, if G = E(1y) then E(1y¢)) = E(1y) and
hence 3¢y € [R] with ¥(U) = V(G).

@ [R]-invariance of y and W imply it suffices to show
u(V(G)) = W(V(G)) whenever G: Y — [0, 1] is measurable.
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Lemmata Amenable equivalence relations

Proof.
e Given G: Y — [0, 1] define

W(G) :={(t,y): 0<t< G(y)} C[0,1] x Y,

and let V(G) = 6OV(G)).

@ For measurable U C X, if G = E(1y) then E(1y¢)) = E(1y) and
hence 3¢y € [R] with ¥(U) = V(G).

@ [R]-invariance of y and W imply it suffices to show
u(V(G)) = W(V(G)) whenever G: Y — [0, 1] is measurable.

o Partitioning Y with respect to to the range of G, multiplying this

partition by [0, 1], and feeding these sets through 6 yields a partition
of X into R-invariant sets.
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Lemmata Amenable equivalence relations

Proof.
e Given G: Y — [0, 1] define

W(G) :={(t,y): 0<t< G(y)} C[0,1] x Y,

and let V(G) = 6OV(G)).

@ For measurable U C X, if G = E(1y) then E(1y¢)) = E(1y) and
hence 3¢y € [R] with ¥(U) = V(G).

@ [R]-invariance of y and W imply it suffices to show
u(V(G)) = W(V(G)) whenever G: Y — [0, 1] is measurable.

o Partitioning Y with respect to to the range of G, multiplying this
partition by [0, 1], and feeding these sets through 6 yields a partition
of X into R-invariant sets.

@ Then by further partitioning [0, 1], one is able to show
1n(V(G)) —¥(V(G))| < n~L for all n.
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Lemmata Amenable equivalence relations

Proof.
@ Case 3: General R.

@ Partition X into R-invariant measurable subsets V and (V)52 ; such
that R |y is of type ll; and R |y, is of type I,.
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Lemmata Amenable equivalence relations

Proof.
o Case 3: General R.
@ Partition X into R-invariant measurable subsets V and (V)52 ; such
that R |y is of type ll; and R |y, is of type I,.
@ From previous two cases and finite additivity we know pu(U) = W(U)
whenever U C VU J,cr Vi for F C N finite.
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Lemmata Amenable equivalence relations

Proof.

e Case 3: General R.

@ Partition X into R-invariant measurable subsets V and (V)52 ; such
that R |y is of type ll; and R |y, is of type I,.

@ From previous two cases and finite additivity we know pu(U) = W(U)
whenever U C VU J,cr Vi for F C N finite.

@ Fix € > 0 and choose F large enough, yet finite, so that
1(Ungr V) < €. This union is R-invariant so same inequality holds
for W. Then for any measurable U C X we have |u(U) — V(U)| < 2e.

O
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Proof of Main Theorem

Proof of Theorem 2.1.

e Fix a nonsingular free action I ~ (X, ) and V C X a non-negligible
subset.
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Proof of Main Theorem

Proof of Theorem 2.1.

e Fix a nonsingular free action I ~ (X, ) and V C X a non-negligible
subset.

@ Denote R =R(I ~ X), M= L>®(X) xT = L(R).

Brent Nelson (UCLA) Indecomposability of free nonsingular action: March 1, 2013 22 /30



Proof of Main Theorem

Proof of Theorem 2.1.
e Fix a nonsingular free action I ~ (X, ) and V C X a non-negligible
subset.
@ Denote R =R(I ~ X), M= L>®(X) xT = L(R).
@ Assume V = X; X X5 and that there are recurrent nonsingular
equivalence relations S; on X; such that S Xx S, C R |v.
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Proof of Main Theorem

Proof of Theorem 2.1.
e Fix a nonsingular free action I ~ (X, ) and V C X a non-negligible
subset.
@ Denote R =R(I ~ X), M= L>®(X) xT = L(R).
@ Assume V = X; X X5 and that there are recurrent nonsingular
equivalence relations S; on X; such that S Xx S, C R |v.

@ Need to show the S; are amenable and by symmetry suffices to show
Sy is amenable.
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Proof of Main Theorem

Proof of Theorem 2.1.

e Fix a nonsingular free action I ~ (X, ) and V C X a non-negligible
subset.

@ Denote R =R(I ~ X), M= L>®(X) xT = L(R).

@ Assume V = X; X X5 and that there are recurrent nonsingular
equivalence relations S; on X; such that S Xx S, C R |v.

@ Need to show the S; are amenable and by symmetry suffices to show
S, is amenable.

@ Denote P; = L(S;) and e = 1y, then PL®P, C eMe with expectation
and hence P; C eMe with expectation.
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Proof of Main Theorem

Proof of Theorem 2.1.

e Fix a nonsingular free action I ~ (X, ) and V C X a non-negligible
subset.

@ Denote R =R(I ~ X), M= L>®(X) xT = L(R).

@ Assume V = X; X X5 and that there are recurrent nonsingular
equivalence relations S; on X; such that S Xx S, C R |v.

@ Need to show the S; are amenable and by symmetry suffices to show
S» is amenable.

@ Denote P; = L(S;) and e = 1y, then P1®P, C eMe with expectation
and hence P; C eMe with expectation.

@ Recurrence of §1 = P; has no type / direct summand so condition
(1) in definition implies pP1p Apm L*°(X) for every nonzero projection
p € P1. Then Lemma 3.3 implies A C P; diffuse abelian
x-subalgebra with expectation such that A Ay L>(X).
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Proof of Main Theorem

Proof of Theorem 2.1.

@ Let ' ~ X X R be the Maharam extension and give X x R canonical
infinite -invariant measure m.
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Proof of Main Theorem

Proof of Theorem 2.1.
@ Let ' ~ X X R be the Maharam extension and give X x R canonical
infinite -invariant measure m.
@ Denote ¢(R) = R(I ~ X x R), then ¢(R) is llo, c(S2) C ec(R)e,
c(M) = L(c(R)), and ¢c(P2) = L(c(S2)).
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Proof of Main Theorem

Proof of Theorem 2.1.

@ Let ' ~ X X R be the Maharam extension and give X x R canonical
infinite -invariant measure m.

@ Denote ¢(R) = R(I ~ X x R), then ¢(R) is llo, c(S2) C ec(R)e,
c(M) = L(c(R)), and ¢c(P2) = L(c(S2)).

@ Choose an arbitrary U C V X R of finite measure and denote
p =1y € L>®(X x R). It suffices to show c(S2) |y is amenable,
which, upon rescaling the trace, is a countable pmp equivalence
relation.
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Proof of Main Theorem

Proof of Theorem 2.1.

@ Let ' ~ X X R be the Maharam extension and give X x R canonical
infinite -invariant measure m.

@ Denote ¢(R) = R(I ~ X x R), then ¢(R) is llo, c(S2) C ec(R)e,
c(M) = L(c(R)), and ¢c(P2) = L(c(S2)).

@ Choose an arbitrary U C V X R of finite measure and denote
p =1y € L>®(X x R). It suffices to show c(S2) |y is amenable,
which, upon rescaling the trace, is a countable pmp equivalence
relation.

e Let G :=[c(S2) |y] be the full group. For each ¢ € G we have
canonical unitary u(vy)) € pc(P2)p.
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Proof of Main Theorem

Proof of Theorem 2.1.

e By Lemma 3.5, suffices to prove for every projection z € Z(pc(P2)p)

and all ¢1,...,9%, € G that

n

Z u(Yi)z @ Ju(rpg)zd

k=1 min

=n.
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Proof of Main Theorem

Proof of Theorem 2.1.
e By Lemma 3.5, suffices to prove for every projection z € Z(pc(P2)p)
and all ¢1,...,9%, € G that

n

Z u(Yi)z @ Ju(rpg)zd

k=1

=n.

min

@ Denote by £ C ¢(P,) the finite dimensional operator space spanned
by

{1} U{u(@n)z, ..., u(yn)z} Uu(¥n) 2z, .o u(@n) 2}
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Proof of Main Theorem

Proof of Theorem 2.1.
e By Lemma 3.5, suffices to prove for every projection z € Z(pc(P2)p)
and all ¢1,...,9%, € G that

n

Z u(Yi)z @ Ju(rpg)zd

k=1

=n.

@ Denote by £ C ¢(P,) the finite dimensional operator space spanned
by
{1} U{u(¥r)z, ..., u(¥n)z} U{u(¥1)*z, ... u(¥n) 2}

@ We construct completely positive contractive maps
it € = L®(X X R) Xyeq I such that ¢;(x)p — xp *-strongly for all
x € €.
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Proof of Main Theorem

Proof of Theorem 2.1.
e For each k find partitions (Uf)ger and (V)ger of U such that

Yi(y) =g -y forae ye Ué,‘ and ¥, '(y) =g -y forae y¢ ng.
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Proof of Main Theorem

Proof of Theorem 2.1.
e For each k find partitions (Uf)ger and (V)ger of U such that

Yi(y) =g -y forae ye Ué,‘ and Qﬁ;l(y) =g-yforae ye€ ng.

@ Then for any € > 0 we can find Fx C G finite such that
m (Uggr, UEU VE) < 5.
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Proof of Main Theorem

Proof of Theorem 2.1.
e For each k find partitions (Uf)ger and (V)ger of U such that

Yi(y) =g -y forae ye Ué‘ and ¢;1(y) =g-yforae ye€ ng.

@ Then for any € > 0 we can find Fx C G finite such that
m (Uggr, UEU VE) < 5.

o Let pj =1, upuvg and define p© = V, Pi. Then [ p¢ dm < € and

u(Yr)(1 — p©) and u(vk)*(1 — p©) are supported on finitely many
gel.
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Proof of Main Theorem

Proof of Theorem 2.1.

e For each k find partitions (Uf)ger and (V)ger of U such that
Yi(y) =g -y forae ye Ué‘ and w;l(y) =g-yforae ye€ ng.

@ Then for any € > 0 we can find F, C G finite such that

k k
m (Uggr, UEU VE) < 5.

o Let pj =1, upuvg and define p© = V, Pi. Then [ p¢ dm < € and
u(Yr)(1 — p©) and u(vk)*(1 — p©) are supported on finitely many
gerl.

@ So pj :=1— p'/'is a sequence converging to p = 1y strongly such
that u(vi)pi, u(Yi)*pi € L(X x R) Xqg I forall k=1,...,nand
all /.

Brent Nelson (UCLA) Indecomposability of free nonsingular action: March 1, 2013 25 / 30



Proof of Main Theorem

Proof of Theorem 2.1.
e For each k find partitions (Uf)ger and (V)ger of U such that
Yi(y) =g -y forae ye Ué‘ and w;l(y) =g-yforae ye€ ng.
@ Then for any € > 0 we can find Fx C G finite such that
m (Ugm Uk u vgk) <<
o Let pj =1, upuvg and define p© = V, Pi. Then [ p¢ dm < € and

u(Yr)(1 — p©) and u(vk)*(1 — p©) are supported on finitely many
gel.

@ So pj :=1— p'/'is a sequence converging to p = 1y strongly such
that u(vi)pi, u(Yi)*pi € L(X x R) Xqg I forall k=1,...,nand
all .

@ Define p;(x) = pixp;.
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Proof of Main Theorem

Proof of Theorem 2.1.

e Let HC L2(Y,v) =: D be the Gaussian construction associated with
the representation 7: G — U(H) and the proper map c: G—>HCD
(from the definition of Q%H,eg) and define M = (DRL>(X)) x T.
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Proof of Main Theorem

Proof of Theorem 2.1.

e Let HC L2(Y,v) =: D be the Gaussian construction associated with
the representation 7: G — U(H) and the proper map c: G—>HCD
(from the definition of Q%H,eg) and define M = (DRL>(X)) x T.

@ Define

H = L%(c(M)) = L*(c(L=(X))) ® 1*(T), and
H = L2(c(M)) = L2(D) @ L*(c(L>=(X))) @ I*(I).

and define a partial isometry v: % — H by v(n®dg) =10 nQ® 4.
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Proof of Main Theorem

Proof of Theorem 2.1.

e Let HC L2(Y,v) =: D be the Gaussian construction associated with
the representation 7: G — U(H) and the proper map c: G—>HCD
(from the definition of Q%H,eg) and define M = (DRL>(X)) x T.

@ Define

H = L%(c(M)) = L*(c(L=(X))) ® 1*(T), and
H = L2(c(M)) = L2(D) @ L*(c(L>=(X))) @ I*(I).

and define a partial isometry v: % — H by v(n®dg) =10 nQ® 4.
@ Recall (V})ier are defined on # by

Vi ® 1 ® dp) = vi(h)§ ® 1 ® dp,

where v;(g)(x) = exp(itc(g)(x)).
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Proof of Main Theorem

Proof of Theorem 2.1.
e A lemma from [2] yields that for all x € c(L*°(X)) Xyed I',

tli_% |xVev — Vevx|| o = l!l_r;rg) | IxJVev — Vevdxd||, = 0.
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Proof of Main Theorem

Proof of Theorem 2.1.
e A lemma from [2] yields that for all x € c(L*°(X)) Xyed I',

tli_% |xVev — Vevx|| o = l!l_r;% | IxIVev — Vevdxd||, = 0.

@ Using this and condition (2) in the definition of A Ay L*°(X) implies
3¢ € H © H such that |||z > 6 for all t > 0 and that

“Tjé’p lli(u(vi)z)Joi(u(i)z) JE: — &l 4

< 2||(pi(u(¥i)z) — u(Pi)2)pllom — 0,

where Tr is the canonical trace on ¢(M).
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@ Thus

Y vilu(i)2)Jei(u(vi)z)J

k=1

> n.
B(HoM)

lim sup
i




Proof of Main Theorem

Proof of Theorem 2.1.
@ Thus

n

pi(u(r)z)dpi(u(vi)z)J

k=1

> n.
B(HOH)

lim sup
i

@ The binormal representation a ® JbJ — aJbJ of ¢(M) ®,1g Jc(M)J is
continuous with respect to the minimal C*-tensor norm ([1],[6]) so:

lim sup

ZSO/ ®J901( (¢k)z)~j

min

>n
B(HOH)

Z‘pl J(Pl( (¢k)Z)J

> lim sup
i
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Proof of Main Theorem

Proof of Theorem 2.1.
o Finally, the ¢; are completely positive and contractive so

> u(thi)z @ Ju(yr)J
k=1 min
> lim sup Zsol ) ® Joi(u()2)d||  =n

min

Brent Nelson (UCLA) Indecomposability of free nonsingular action: March 1, 2013

29 / 30



References

@ C. ANANTHARAMAN-DELAROCHE, Amenable correspondences and approximation
properties for von Neumann algebras. Pacific J. Math. 171 (1995), 309-341.

@ I. CurraN, T. SINCLAIR, On the structural theory of Il factors of negatively
curved groups. arXiv:1103.4299

@ U. HAAGERUP, Injectivity and decomposition of completely bounded maps.
Operator algebras and their connections with topology and ergodic theory (Busteni,
1983), 170-222, Lecture Notes in Math. 1132, Springer, Berlin, 1985.

D C. HOUDAYER, S. VAES, Type Il factors with unique Cartan decomposition,
Journal de Mathmatiques Pures et Appliques, to appear. arXiv:1203.1254

M. TAKESAKI, Theory of operator algebras, Il. Encyclopaedia of Mathematical
Sciences, 125. Operator Algebras and Non-commutative Geometry, 6.
Springer-Verlag, Berlin, 2003. xxii+518 pp.

D S. VAES, One-cohomology and the uniqueness of the group measure space
decomposition of a ll; factor. Math. Ann., to appear. arXiv:1012.5077

Brent Nelson (UCLA) Indecomposability of free nonsingular action: March 1, 2013 30 / 30



	Preliminaries
	Group Actions and Equivalence Relations
	Type III von Neumann Algebras
	Maharam Extension

	Main Theorem
	Lemmata
	Intertwining by bimodules
	Amenable equivalence relations

	Proof of Main Theorem
	References

