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Preliminaries Group Actions and Equivalence Relations

Definition 1.1

Recall that a countably infinite group Γ belongs to the class QHreg if it
admits

(i) π : Γ→ U(H) a unitary representation which is weakly contained in
the left regular representation;

(ii) c : Γ→ H a proper map (i.e. |{g ∈ Γ: ‖c(g)‖ ≤ R}| <∞ for every
R > 0) satisfying

sup
x∈Γ
‖c(gxh)− πg (c(x))‖ <∞ ∀g , h ∈ Γ.
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Preliminaries Group Actions and Equivalence Relations

Definition 1.2

An action Γ y (X , µ) is non-singular if µ(g · A) = 0⇔ µ(A) = 0 for
every g ∈ Γ and A ⊂ X .

Let R = R(Γ y X ) be the equivalence relation generated by such a
non-singular action. We say it is recurrent if for every Borel subset
W ⊂ X with µ(W ) > 0, and for µ-almost every x ∈W , the
intersection W ∩ {y : (x , y) ∈ R} is infinite. Equivalently, for
µ-almost every x ∈W , the orbit Γ · x returns to W infinitely often.
This is also equivalent to saying L∞(X ) o Γ has no type I direct
summand.

We say R is decomposable if (X , µ) = (X1, µ1)× (X2, µ2) and there
are recurrent non-singular equivalence relations Si on (Xi , µi ) such
that (x , y) ∈ R iff x = (x1, x2), y = (y1, y2) ∈ X1 × X2 with
(xi , yi ) ∈ Si for i = 1, 2, i.e. R = S1 × S2.
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Preliminaries Type III von Neumann Algebras

Let (M, ϕ) be a von Neumann algebra together with a faithful normal
state.1

Let (Hϕ, πϕ, ηϕ) be the GNS construction.

ηϕ(x) 7→ ηϕ(x∗) for x ∈ M extends to a densely defined unbounded
operator S on Hϕ.

Letting S = J∆
1
2
ϕ be the polar decomposition, we define {σϕt }t∈R, the

modular automorphism group of ϕ, by σϕt (x) = ∆it
ϕx∆−itϕ .

Define a representation πσ of M on L2(R,Hϕ), the space of square
integrable Hϕ-valued functions by

(πσ(x)ξ)(s) = πϕ
(
σϕ−s(x)

)
ξ(s),

and let R act via translation: (λ(t)ξ)(s) = ξ(s − t).

1see Takesaki [5] for full treatment
Brent Nelson (UCLA) Indecomposability of free nonsingular actions by nonamenable groups in QHregMarch 1, 2013 4 / 30



Preliminaries Type III von Neumann Algebras

Let (M, ϕ) be a von Neumann algebra together with a faithful normal
state.1

Let (Hϕ, πϕ, ηϕ) be the GNS construction.

ηϕ(x) 7→ ηϕ(x∗) for x ∈ M extends to a densely defined unbounded
operator S on Hϕ.

Letting S = J∆
1
2
ϕ be the polar decomposition, we define {σϕt }t∈R, the

modular automorphism group of ϕ, by σϕt (x) = ∆it
ϕx∆−itϕ .

Define a representation πσ of M on L2(R,Hϕ), the space of square
integrable Hϕ-valued functions by

(πσ(x)ξ)(s) = πϕ
(
σϕ−s(x)

)
ξ(s),

and let R act via translation: (λ(t)ξ)(s) = ξ(s − t).

1see Takesaki [5] for full treatment
Brent Nelson (UCLA) Indecomposability of free nonsingular actions by nonamenable groups in QHregMarch 1, 2013 4 / 30



Preliminaries Type III von Neumann Algebras

Let (M, ϕ) be a von Neumann algebra together with a faithful normal
state.1

Let (Hϕ, πϕ, ηϕ) be the GNS construction.

ηϕ(x) 7→ ηϕ(x∗) for x ∈ M extends to a densely defined unbounded
operator S on Hϕ.

Letting S = J∆
1
2
ϕ be the polar decomposition, we define {σϕt }t∈R, the

modular automorphism group of ϕ, by σϕt (x) = ∆it
ϕx∆−itϕ .

Define a representation πσ of M on L2(R,Hϕ), the space of square
integrable Hϕ-valued functions by

(πσ(x)ξ)(s) = πϕ
(
σϕ−s(x)

)
ξ(s),

and let R act via translation: (λ(t)ξ)(s) = ξ(s − t).

1see Takesaki [5] for full treatment
Brent Nelson (UCLA) Indecomposability of free nonsingular actions by nonamenable groups in QHregMarch 1, 2013 4 / 30



Preliminaries Type III von Neumann Algebras

Let (M, ϕ) be a von Neumann algebra together with a faithful normal
state.1

Let (Hϕ, πϕ, ηϕ) be the GNS construction.

ηϕ(x) 7→ ηϕ(x∗) for x ∈ M extends to a densely defined unbounded
operator S on Hϕ.

Letting S = J∆
1
2
ϕ be the polar decomposition, we define {σϕt }t∈R, the

modular automorphism group of ϕ, by σϕt (x) = ∆it
ϕx∆−itϕ .

Define a representation πσ of M on L2(R,Hϕ), the space of square
integrable Hϕ-valued functions by

(πσ(x)ξ)(s) = πϕ
(
σϕ−s(x)

)
ξ(s),

and let R act via translation: (λ(t)ξ)(s) = ξ(s − t).

1see Takesaki [5] for full treatment
Brent Nelson (UCLA) Indecomposability of free nonsingular actions by nonamenable groups in QHregMarch 1, 2013 4 / 30



Preliminaries Type III von Neumann Algebras

Let (M, ϕ) be a von Neumann algebra together with a faithful normal
state.1

Let (Hϕ, πϕ, ηϕ) be the GNS construction.

ηϕ(x) 7→ ηϕ(x∗) for x ∈ M extends to a densely defined unbounded
operator S on Hϕ.

Letting S = J∆
1
2
ϕ be the polar decomposition, we define {σϕt }t∈R, the

modular automorphism group of ϕ, by σϕt (x) = ∆it
ϕx∆−itϕ .

Define a representation πσ of M on L2(R,Hϕ), the space of square
integrable Hϕ-valued functions by

(πσ(x)ξ)(s) = πϕ
(
σϕ−s(x)

)
ξ(s),

and let R act via translation: (λ(t)ξ)(s) = ξ(s − t).

1see Takesaki [5] for full treatment
Brent Nelson (UCLA) Indecomposability of free nonsingular actions by nonamenable groups in QHregMarch 1, 2013 4 / 30



Preliminaries Type III von Neumann Algebras

The representations {πσ, λ} are covariant:

λ(t)πσ(x) = πσ (σϕt (x))λ(t).

The crossed product M oϕ R is the von Neumann algebra generated
by πσ(M) ∪ λ(R) ⊂ B(L2(R,Hϕ)). Note that (λ(s))s∈R generates a
copy of L(R) inside M oϕ R.

There exists a dual weight ϕ̂ on M oϕ R which is a normal semifinite
faithful weight on M oϕ R whose modular automorphism group(
σϕ̂t

)
t∈R

satisfies

σϕ̂t (πσ(x)) = πσ(σϕt (x)) for all x ∈ M,

σϕ̂t (λ(s)) = λ(s) for all s ∈ R.
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Preliminaries Type III von Neumann Algebras

The dual action (θϕt )t∈R on M oϕ R is given by

θϕt (πσ(x)) = πσ(x) for all x ∈ M,

θϕt (λ(s)) = e itsλ(s) for all s ∈ R.

Let hϕ be the unique nonsingular positive selfadjoint operator
affiliated with L(R) ⊂ M oϕ R such that his

ϕ = λϕ(s) for all s ∈ R,
then Trϕ := ϕ̂(h−1

ϕ ·) defines a semifinite faithful normal trace on
M oϕ R and the dual action θϕ scales the trace:

Trϕ ◦ θϕt = etTrϕ for all t ∈ R.

Moreover, Trϕ is semifinite on L(R) and is preserved by the canonical
faithful normal conditional expectation EL(R) defined by
EL(R)(πσ(x)λ(s)) = ϕ(x)λ(s).
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Preliminaries Type III von Neumann Algebras

Connes’ Radon-Nikodym cocycle theorem implies the crossed product
with respect to ϕ can be canonically mapped to the crossed product
with respect to any other faithful normal state on M.

Hence we abstractly consider the continuous core (c(M), θ,Tr), where
c(M) is a von Neumann algebra with a faithful normal semifinite
trace Tr and a trace-scaling action of R, θ.

Given a faithful normal state ϕ on M, there is a canonical surjective
∗-homomorphism Πϕ : M oϕ R→ c(M) such that

Πϕ ◦ θϕ = θ ◦ Πϕ, Trϕ = Tr ◦ Πϕ, Πϕ(πσ(x)) = x ∀x ∈ M.

Takesaki’s duality theorem implies c(M) oθ R ∼= M⊗̄B(L2(R)). In
particular, M is amenable if and only if c(M) is amenable.
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Preliminaries Maharam Extension

For a nonsingular action Γ y (X , µ) on a standard measure space,
the Maharam extension Γ y (X × R,m) is given by

g · (x , t) =

(
g · x , t + log

(
dµ ◦ g−1

dµ
(x)

))
,

and dm = dµ× etdt. This action is m-preserving, although m is an
infinite measure.

c(L∞(X ) o Γ) = L∞(X × R) o Γ.

In terms of equivalence relations, if R = R(Γ y X ) and
L(R) = L∞(X ) o Γ and if we denote c(R) = R(Γ y X × R) then
c(L(R)) = L(c(R)).
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Main Theorem

Theorem 2.1

Let Γ be any group in the class QHreg and Γ y (X , µ) any free
nonsingular action on a standard measure space. Let V ⊂ X be a
non-negligible subset. Every nonamenable recurrent subequivalence
relation of R(Γ y X ) |V is indecomposable.
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Lemmata Intertwining by bimodules

Theorem 3.1

Let M be any σ-finite von Neumann algebra. Let A ⊂ 1AM1A and
B ⊂ 1BM1B be von Neumann subalgebras such that B is finite and with
expectation EB : 1BM1B → B. The following are equivalent:

(1) There exist n ≥ 1, a possibly nonunital normal ∗-homomorphism
π : A→ Mn(B) and a nonzero partial isometry v ∈ M1,n(1AM1B)
such that av = vπ(a) for all a ∈ A.

(2) There is no net of unitaries (wi ) ⊂ U(A) such that EB(x∗wiy)→ 0
∗-strongly for all x , y ∈ 1AM1B .
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Lemmata Intertwining by bimodules

Proof of (2)⇒ (1).

Fix faithful normal tracial state τ on B and define ϕ(x) = τ(EB(x))
for x ∈ 1BM1B , extend to faithful normal positive functional on M.

Denote H := J1BJL2(M, ϕ), Mz is faithfully represented on H where
z is central support of 1B in M. Let eB denote the orthogonal
projection of H onto L2(B, τ) ⊂ H.

Consider N := B(H) ∩ (JBJ)′, and realize that the faithful trace τ on
B implies there is a canonical faithful normal semifinite trace Tr on N
satisfying Tr(TT ∗) = τ(T ∗T ) for all bounded right B-linear maps
T : L2(B, τ)→ H. Also, eB ∈ N with Tr(eB) = 1.

Regard Mz as a von Neumann subalgebra of N , since it acts
faithfully on H.
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Lemmata Intertwining by bimodules

Proof of (2)⇒ (1).

On bounded subsets of B, strong∗ topology coincides with
‖ · ‖2-topology. So (2) implies ∃δ > 0 and a finite subset F ⊂ 1AM1B
such that ∑

x ,y∈F
‖EB(x∗wy)‖2

2 ≥ δ for all w ∈ U(A).

By considering ξ =
∑

x∈F xeBx∗ ∈ N+, taking minimal element of
‖ · ‖2,Tr-norm in the weak closure of convex hull of
{wξw∗ : w ∈ U(A)}, and taking a suitable spectral projection we can
find a nonzero projection p ∈ A′ ∩ 1AN1A such that Tr(p) <∞.

pH is a nonzero A− B-bimodule with finite dimension over B. Can
find K ⊂ pH a nonzero A− B-subbimodule which is finitely generate
as a right B-module.
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Lemmata Intertwining by bimodules

Proof of (2)⇒ (1).

Let n ≥ 1 and q ∈ Mn(B) a nonzero projection such that there exists
a right B-module isomorphism ψ : KB → (qL2(B)⊕n)B .

Let π : A→ qMn(B)q be the unital ∗-homomorphism such that
ψ(aζ) = π(a)ψ(ζ) for all a ∈ A and all ζ ∈ K.

Take ξi ∈ K with ψ(ξi ) = q(0, . . . , 0, 1B , 0, . . . , 0). Then
ξ = (ξi ) ∈ M1,n(C)⊗K satisfies aξ = Jπ(a)∗Jξ for all a ∈ A.

The polar decomposition of ξ in the standard representation of
Mn(M) yields the desired partial isometry v .

Definition 3.2

If either of the two equivalent conditions in Theorem 3.1 holds, then we
say A embeds into B inside M and denote A �M B.
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ψ(aζ) = π(a)ψ(ζ) for all a ∈ A and all ζ ∈ K.

Take ξi ∈ K with ψ(ξi ) = q(0, . . . , 0, 1B , 0, . . . , 0). Then
ξ = (ξi ) ∈ M1,n(C)⊗K satisfies aξ = Jπ(a)∗Jξ for all a ∈ A.

The polar decomposition of ξ in the standard representation of
Mn(M) yields the desired partial isometry v .

Definition 3.2

If either of the two equivalent conditions in Theorem 3.1 holds, then we
say A embeds into B inside M and denote A �M B.
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Lemmata

Lemma 3.3

Let M be a von Neumann algebra with a separable predual. Let
A ⊂ 1AM1A and B ⊂ M be unital von Neumann subalgebras with
expectations. Assume that B is abelian and that for every nonzero
projection p ∈ A, we have pAp 6�M B. Then there exists a diffuse abelian
∗-subalgebra D ⊂ A with expectation such that D 6�M B.

Proof.

Find z ∈ Z(A) such that Az is type I and A(1A − z) has no type I
direct summand.

Fix D0 ⊂ Az unital maximal abelian ∗-subalgebra with expectation, it
follows that D0 6�M B.
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Lemmata

Proof.

In A(1A − z), inductively construct an increasing sequence (Qn) of
unital abelian finite dimensional ∗-subalgebras of A(1A − z) and
unitaries wn ∈ Qn such that ‖EB(x∗i wixj)‖2,τ◦EB

< n−1, where
{xi}i∈N ⊂ (1A − z)M is dense with respect to the ‖ · ‖2,τ◦EB

-norm.

Set D1 :=
∨

n Qn, then D1 6�M B.

D = D0 ⊗ D1 is a unital diffuse abelian ∗-subalgebra with expectation
such that D 6�M B.
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Lemmata Amenable equivalence relations

Definition 3.4

An equivalence relation R is amenable if there exists a state Ω on L∞(R)
satisfying

Ω(F ) =

∫
X

F (x) dµ(x) for all F ∈ L∞(X ), and

Ω(u(ψ)Fu(ψ)∗) = Ω(F ) for all ψ ∈ [R], F ∈ L∞(R)

Lemma 3.5

A countable pmp equivalence relation R is amenable if and only if for all
non-negligible R-invariant measurable subsets U ⊂ X and all
ψ1, . . . , ψn ∈ [R], we have∥∥∥∥∥

n∑
k=1

u(ψk)1U ⊗ Ju(ψk)1UJ

∥∥∥∥∥
min

= n. (1)
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Lemmata Amenable equivalence relations

Proof.

By a lemma in [3], (1) is equivalent to the existence of a state Ω on
L∞(R) satisfying

Ω(F ) =

∫
X

F (x) dµ(x) for all F ∈ L∞(X )R, and

Ω(u(ψ)Fu(ψ)∗) = Ω(F ) for all ψ ∈ [R], F ∈ L∞(R)

So it suffices to show Ω(1V ) = µ(V ) for any V ⊂ X . Define mean
Ψ(V ) := Ω(1V ).
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Lemmata Amenable equivalence relations

Proof.

Case 1: R is homogeneous type In, 1 ≤ n <∞.

∃V ⊂ X with µ(V ) = 1
n , and ψ1, . . . , ψn ∈ [R] such that for a.e.

x ∈ V , {ψ1(x), . . . , ψn(x)} is equivalence class of x .

For U ⊂ V , ψk(U) are disjoint and union is R-invariant so:

nµ(U) = µ

(
n⋃

k=1

ψk(U)

)
= Ψ

(
n⋃

k=1

ψk(U)

)

=
n∑

k=1

Ψ(ψk(U)) = nΨ(U)

Then by ψk -invariance, µ(U) = Ψ(U) for all U ⊂ ψk(V ), hence for
all U ⊂ X by finite additivity.
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Lemmata Amenable equivalence relations

Proof.

Case 2: R is homogeneous of type II1.

Let E : L∞(X )→ L∞(X )R be trace preserving conditional
expectation.

Can write L∞(X )R = L∞(Y , η) with (Y , η) a standard probability
space, and can write (X , µ) as a direct integral over (Y , η) of a
measurable field of standard probability spaces isomorphic to
([0, 1], dx) (as R is type II1).

There is an isomorphism of probability spaces θ : [0, 1]× Y → X such
that F (θ(t, y)) = F (y) for all F ∈ L∞(Y ) = L∞(X )R and a.e.

(t, y) ∈ [0, 1]× Y . Also (E (F ))(y) =
∫ 1

0 F (θ(t, y)) dt for all
F ∈ L∞(X ) and a.e. y ∈ Y .
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Lemmata Amenable equivalence relations

Proof.

Given G : Y → [0, 1] define

W(G ) := {(t, y) : 0 ≤ t ≤ G (y)} ⊂ [0, 1]× Y ,

and let V(G ) = θ(W(G )).

For measurable U ⊂ X , if G = E (1U) then E (1V(G)) = E (1U) and
hence ∃ψ ∈ [R] with ψ(U) = V(G ).

[R]-invariance of µ and Ψ imply it suffices to show
µ(V(G )) = Ψ(V(G )) whenever G : Y → [0, 1] is measurable.

Partitioning Y with respect to to the range of G , multiplying this
partition by [0, 1], and feeding these sets through θ yields a partition
of X into R-invariant sets.

Then by further partitioning [0, 1], one is able to show
|µ(V(G ))−Ψ(V(G ))| < n−1 for all n.
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Lemmata Amenable equivalence relations

Proof.

Case 3: General R.

Partition X into R-invariant measurable subsets V and (Vn)∞n=1 such
that R |V is of type II1 and R |Vn is of type In.

From previous two cases and finite additivity we know µ(U) = Ψ(U)
whenever U ⊂ V ∪

⋃
n∈F Vn for F ⊂ N finite.

Fix ε > 0 and choose F large enough, yet finite, so that
µ(
⋃

n 6∈F Vn) < ε. This union is R-invariant so same inequality holds
for Ψ. Then for any measurable U ⊂ X we have |µ(U)−Ψ(U)| < 2ε.
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n 6∈F Vn) < ε. This union is R-invariant so same inequality holds
for Ψ. Then for any measurable U ⊂ X we have |µ(U)−Ψ(U)| < 2ε.
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Proof of Main Theorem

Proof of Theorem 2.1.

Fix a nonsingular free action Γ y (X , µ) and V ⊂ X a non-negligible
subset.

Denote R = R(Γ y X ), M = L∞(X ) o Γ = L(R).

Assume V = X1 × X2 and that there are recurrent nonsingular
equivalence relations Si on Xi such that S1 × S2 ⊂ R |V .

Need to show the Si are amenable and by symmetry suffices to show
S2 is amenable.

Denote Pi = L(Si ) and e = 1V , then P1⊗̄P2 ⊂ eMe with expectation
and hence Pi ⊂ eMe with expectation.

Recurrence of S1 ⇒ P1 has no type I direct summand so condition
(1) in definition implies pP1p 6�M L∞(X ) for every nonzero projection
p ∈ P1. Then Lemma 3.3 implies ∃A ⊂ P1 diffuse abelian
∗-subalgebra with expectation such that A 6�M L∞(X ).
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Proof of Main Theorem

Proof of Theorem 2.1.

Let Γ y X × R be the Maharam extension and give X × R canonical
infinite Γ-invariant measure m.

Denote c(R) = R(Γ y X × R), then c(R) is II∞, c(S2) ⊂ ec(R)e,
c(M) = L(c(R)), and c(P2) = L(c(S2)).

Choose an arbitrary U ⊂ V × R of finite measure and denote
p = 1U ∈ L∞(X × R). It suffices to show c(S2) |U is amenable,
which, upon rescaling the trace, is a countable pmp equivalence
relation.

Let G := [c(S2) |U ] be the full group. For each ψ ∈ G we have
canonical unitary u(ψ) ∈ pc(P2)p.
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Proof of Main Theorem

Proof of Theorem 2.1.

By Lemma 3.5, suffices to prove for every projection z ∈ Z(pc(P2)p)
and all ψ1, . . . , ψn ∈ G that∥∥∥∥∥

n∑
k=1

u(ψk)z ⊗ Ju(ψk)zJ

∥∥∥∥∥
min

= n.

Denote by E ⊂ c(P2) the finite dimensional operator space spanned
by

{1} ∪ {u(ψ1)z , . . . , u(ψn)z} ∪ {u(ψ1)∗z , . . . , u(ψn)∗z}.

We construct completely positive contractive maps
ϕi : E → L∞(X × R) ored Γ such that ϕi (x)p → xp ∗-strongly for all
x ∈ E .
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Proof of Main Theorem

Proof of Theorem 2.1.

For each k find partitions (Uk
g )g∈Γ and (V k

g )g∈Γ of U such that

ψk(y) = g · y for a.e. y ∈ Uk
g and ψ−1

k (y) = g · y for a.e. y ∈ V k
g .

Then for any ε > 0 we can find Fk ⊂ G finite such that

m
(⋃

g 6∈Fk
Uk
g ∪ V k

g

)
< ε

n .

Let pεk = 1⋃
g 6∈Fk

Uk
g∪V k

g
and define pε =

∨
k pεk . Then

∫
pε dm < ε and

u(ψk)(1− pε) and u(ψk)∗(1− pε) are supported on finitely many
g ∈ Γ.

So pi := 1− p1/i is a sequence converging to p = 1U strongly such
that u(ψk)pi , u(ψk)∗pi ∈ L∞(X × R) oalg Γ for all k = 1, . . . , n and
all i .

Define ϕi (x) = pixpi .
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Proof of Main Theorem

Proof of Theorem 2.1.

Let H ⊂ L2
R(Y , ν) =: D be the Gaussian construction associated with

the representation π : G → U(H) and the proper map c : G → H ⊂ D
(from the definition of QHreg) and define M̃ = (D⊗̄L∞(X )) o Γ.

Define

H = L2(c(M)) = L2(c(L∞(X )))⊗ l2(Γ), and

H̃ = L2(c(M̃)) = L2(D)⊗ L2(c(L∞(X )))⊗ l2(Γ).

and define a partial isometry v : H → H̃ by v(η ⊗ δg ) = 1⊗ η ⊗ δg .

Recall (Vt)t∈R are defined on H̃ by

Vt(ξ ⊗ η ⊗ δh) = vt(h)ξ ⊗ η ⊗ δh,

where vt(g)(x) = exp(itc(g)(x)).
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Proof of Main Theorem

Proof of Theorem 2.1.

A lemma from [2] yields that for all x ∈ c(L∞(X )) ored Γ,

lim
t→0
‖xVtv − Vtvx‖∞ = lim

t→0
‖JxJVtv − VtvJxJ‖∞ = 0.

Using this and condition (2) in the definition of A 6�M L∞(X ) implies
∃ξt ∈ H̃ 	H such that ‖ξt‖H̃ ≥ δ for all t > 0 and that

lim sup
t→0

‖ϕi (u(ψk)z)Jϕi (u(ψk)z)Jξt − ξt‖H̃

≤ 2 ‖(ϕi (u(ψk)z)− u(ψk)z)p‖2,Tr
i→∞−→ 0,

where Tr is the canonical trace on c(M).
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Proof of Main Theorem

Proof of Theorem 2.1.

Thus

lim sup
i

∥∥∥∥∥
n∑

k=1

ϕi (u(ψk)z)Jϕi (u(ψk)z)J

∥∥∥∥∥
B(H̃	H)

≥ n.

The binormal representation a⊗ JbJ 7→ aJbJ of c(M)⊗alg Jc(M)J is
continuous with respect to the minimal C ∗-tensor norm ([1],[6]) so:

lim sup
i

∥∥∥∥∥
n∑

k=1

ϕi (u(ψk)z)⊗ Jϕi (u(ψk)z)J

∥∥∥∥∥
min

≥ lim sup
i

∥∥∥∥∥
n∑

k=1

ϕi (u(ψk)z)Jϕi (u(ψk)z)J

∥∥∥∥∥
B(H̃	H)

≥ n
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Proof of Main Theorem

Proof of Theorem 2.1.

Finally, the ϕi are completely positive and contractive so∥∥∥∥∥
n∑

k=1

u(ψk)z ⊗ Ju(ψk)J

∥∥∥∥∥
min

≥ lim sup
i

∥∥∥∥∥
n∑

k=1

ϕi (u(ψk)z)⊗ Jϕi (u(ψk)z)J

∥∥∥∥∥
min

≥ n
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