Indecomposability of free nonsingular actions by nonamenable groups in \mathcal{QH}_{reg} After C. Houdayer and S. Vaes

Brent Nelson

UCLA

March 1, 2013

Brent Nelson (UCLA)

Indecomposability of free nonsingular action

March 1, 2013 1 / 30

Definition 1.1

Recall that a countably infinite group Γ belongs to the class \mathcal{QH}_{reg} if it admits

- (i) $\pi: \Gamma \to \mathcal{U}(H)$ a unitary representation which is weakly contained in the left regular representation;
- (ii) $c: \Gamma \to H$ a proper map (i.e. $|\{g \in \Gamma : ||c(g)|| \le R\}| < \infty$ for every R > 0) satisfying

$$\sup_{x\in\Gamma}\|c(gxh)-\pi_g(c(x))\|<\infty\qquad\forall g,h\in\Gamma.$$

Definition 1.2

- An action Γ → (X, μ) is non-singular if μ(g · A) = 0 ⇔ μ(A) = 0 for every g ∈ Γ and A ⊂ X.
- Let R = R(Γ ∩ X) be the equivalence relation generated by such a non-singular action. We say it is *recurrent* if for every Borel subset W ⊂ X with µ(W) > 0, and for µ-almost every x ∈ W, the intersection W ∩ {y: (x, y) ∈ R} is infinite. Equivalently, for µ-almost every x ∈ W, the orbit Γ ⋅ x returns to W infinitely often. This is also equivalent to saying L[∞](X) ⋊ Γ has no type I direct summand.
- We say R is decomposable if (X, μ) = (X₁, μ₁) × (X₂, μ₂) and there are recurrent non-singular equivalence relations S_i on (X_i, μ_i) such that (x, y) ∈ R iff x = (x₁, x₂), y = (y₁, y₂) ∈ X₁ × X₂ with (x_i, y_i) ∈ S_i for i = 1, 2, i.e. R = S₁ × S₂.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

 Let (M, φ) be a von Neumann algebra together with a faithful normal state.¹

¹see Takesaki [5] for full treatment

3

Sac

・ロト ・ 日 ト ・ モ ト ・ モ ト

- Let (M, φ) be a von Neumann algebra together with a faithful normal state.¹
- Let $(\mathcal{H}_{\varphi}, \pi_{\varphi}, \eta_{\varphi})$ be the GNS construction.

¹see Takesaki [5] for full treatment

200

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- Let (M, φ) be a von Neumann algebra together with a faithful normal state.¹
- Let $(\mathcal{H}_{\varphi}, \pi_{\varphi}, \eta_{\varphi})$ be the GNS construction.
- η_φ(x) → η_φ(x*) for x ∈ M extends to a densely defined unbounded operator S on H_φ.

¹see Takesaki [5] for full treatment

イロト イポト イヨト イヨト

- Let (M, φ) be a von Neumann algebra together with a faithful normal state.¹
- Let $(\mathcal{H}_{\varphi}, \pi_{\varphi}, \eta_{\varphi})$ be the GNS construction.
- η_φ(x) → η_φ(x*) for x ∈ M extends to a densely defined unbounded operator S on H_φ.
- Letting $S = J\Delta_{\varphi}^{\frac{1}{2}}$ be the polar decomposition, we define $\{\sigma_t^{\varphi}\}_{t \in \mathbb{R}}$, the modular automorphism group of φ , by $\sigma_t^{\varphi}(x) = \Delta_{\varphi}^{it} x \Delta_{\varphi}^{-it}$.

¹see Takesaki [5] for full treatment

- Let (M, φ) be a von Neumann algebra together with a faithful normal state.¹
- Let $(\mathcal{H}_{\varphi}, \pi_{\varphi}, \eta_{\varphi})$ be the GNS construction.
- η_φ(x) → η_φ(x*) for x ∈ M extends to a densely defined unbounded operator S on H_φ.
- Letting $S = J\Delta_{\varphi}^{\frac{1}{2}}$ be the polar decomposition, we define $\{\sigma_t^{\varphi}\}_{t \in \mathbb{R}}$, the modular automorphism group of φ , by $\sigma_t^{\varphi}(x) = \Delta_{\varphi}^{it} x \Delta_{\varphi}^{-it}$.
- Define a representation π_σ of M on L²(ℝ, H_φ), the space of square integrable H_φ-valued functions by

$$(\pi_{\sigma}(x)\xi)(s) = \pi_{\varphi} \left(\sigma_{-s}^{\varphi}(x)\right)\xi(s),$$

and let \mathbb{R} act via translation: $(\lambda(t)\xi)(s) = \xi(s-t)$.

¹see Takesaki [5] for full treatment

• The representations $\{\pi_{\sigma}, \lambda\}$ are covariant:

$$\lambda(t)\pi_{\sigma}(x) = \pi_{\sigma}\left(\sigma_t^{\varphi}(x)\right)\lambda(t).$$

900

• The representations $\{\pi_{\sigma}, \lambda\}$ are covariant:

$$\lambda(t)\pi_{\sigma}(x) = \pi_{\sigma}\left(\sigma_t^{\varphi}(x)\right)\lambda(t).$$

 The crossed product M ⋊_φ ℝ is the von Neumann algebra generated by π_σ(M) ∪ λ(ℝ) ⊂ B(L²(ℝ, H_φ)). Note that (λ(s))_{s∈ℝ} generates a copy of L(ℝ) inside M ⋊_φ ℝ. • The representations $\{\pi_{\sigma}, \lambda\}$ are covariant:

$$\lambda(t)\pi_{\sigma}(x) = \pi_{\sigma}\left(\sigma_t^{\varphi}(x)\right)\lambda(t).$$

- The crossed product M ⋊_φ ℝ is the von Neumann algebra generated by π_σ(M) ∪ λ(ℝ) ⊂ B(L²(ℝ, H_φ)). Note that (λ(s))_{s∈ℝ} generates a copy of L(ℝ) inside M ⋊_φ ℝ.
- There exists a *dual weight* $\hat{\varphi}$ on $M \rtimes_{\varphi} \mathbb{R}$ which is a normal semifinite faithful weight on $M \rtimes_{\varphi} \mathbb{R}$ whose modular automorphism group $\left(\sigma_t^{\hat{\varphi}}\right)_{t \in \mathbb{R}}$ satisfies

$$\sigma_t^{\hat{\varphi}}(\pi_{\sigma}(x)) = \pi_{\sigma}(\sigma_t^{\varphi}(x)) \quad \text{for all } x \in M,$$

 $\sigma_t^{\hat{\varphi}}(\lambda(s)) = \lambda(s) \quad \text{for all } s \in \mathbb{R}.$

・ロト ・ 同ト ・ ヨト ・ ヨ・

• The dual action $(\theta_t^{\varphi})_{t\in\mathbb{R}}$ on $M\rtimes_{\varphi}\mathbb{R}$ is given by

$$\begin{array}{ll} \theta_t^{\varphi}(\pi_{\sigma}(x)) = \pi_{\sigma}(x) & \text{ for all } x \in M, \\ \theta_t^{\varphi}(\lambda(s)) = e^{its}\lambda(s) & \text{ for all } s \in \mathbb{R}. \end{array}$$

596

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

• The dual action $(\theta_t^{\varphi})_{t\in\mathbb{R}}$ on $M\rtimes_{\varphi}\mathbb{R}$ is given by

$$egin{aligned} & heta_t^{arphi}(\pi_\sigma(\mathbf{x})) = \pi_\sigma(\mathbf{x}) & ext{ for all } \mathbf{x} \in M, \ & heta_t^{arphi}(\lambda(s)) = e^{its}\lambda(s) & ext{ for all } s \in \mathbb{R}. \end{aligned}$$

• Let h_{φ} be the unique nonsingular positive selfadjoint operator affiliated with $L(\mathbb{R}) \subset M \rtimes_{\varphi} \mathbb{R}$ such that $h_{\varphi}^{is} = \lambda_{\varphi}(s)$ for all $s \in \mathbb{R}$, then $\operatorname{Tr}_{\varphi} := \hat{\varphi}(h_{\varphi}^{-1} \cdot)$ defines a semifinite faithful normal trace on $M \rtimes_{\varphi} \mathbb{R}$ and the dual action θ^{φ} scales the trace:

$$\mathsf{Tr}_arphi \circ heta_t^arphi = \mathsf{e}^t \mathsf{Tr}_arphi \qquad ext{for all } t \in \mathbb{R}.$$

Moreover, $\operatorname{Tr}_{\varphi}$ is semifinite on $L(\mathbb{R})$ and is preserved by the canonical faithful normal conditional expectation $E_{L(\mathbb{R})}$ defined by $E_{L(\mathbb{R})}(\pi_{\sigma}(x)\lambda(s)) = \varphi(x)\lambda(s)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

• Connes' Radon-Nikodym cocycle theorem implies the crossed product with respect to φ can be canonically mapped to the crossed product with respect to any other faithful normal state on M.

SQA

・ロト ・ 一 マ ・ コ ・

- Connes' Radon-Nikodym cocycle theorem implies the crossed product with respect to φ can be canonically mapped to the crossed product with respect to any other faithful normal state on M.
- Hence we abstractly consider the continuous core (c(M), θ, Tr), where c(M) is a von Neumann algebra with a faithful normal semifinite trace Tr and a trace-scaling action of R, θ.

- Connes' Radon-Nikodym cocycle theorem implies the crossed product with respect to φ can be canonically mapped to the crossed product with respect to any other faithful normal state on M.
- Hence we abstractly consider the continuous core (c(M), θ, Tr), where c(M) is a von Neumann algebra with a faithful normal semifinite trace Tr and a trace-scaling action of R, θ.
- Given a faithful normal state φ on M, there is a canonical surjective *-homomorphism $\Pi_{\varphi} \colon M \rtimes_{\varphi} \mathbb{R} \to c(M)$ such that

$$\Pi_{\varphi} \circ \theta^{\varphi} = \theta \circ \Pi_{\varphi}, \qquad \mathsf{Tr}_{\varphi} = \mathsf{Tr} \circ \Pi_{\varphi}, \qquad \Pi_{\varphi}(\pi_{\sigma}(x)) = x \,\,\forall x \in M.$$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

- Connes' Radon-Nikodym cocycle theorem implies the crossed product with respect to φ can be canonically mapped to the crossed product with respect to any other faithful normal state on M.
- Hence we abstractly consider the continuous core (c(M), θ, Tr), where c(M) is a von Neumann algebra with a faithful normal semifinite trace Tr and a trace-scaling action of R, θ.
- Given a faithful normal state φ on M, there is a canonical surjective *-homomorphism $\Pi_{\varphi} \colon M \rtimes_{\varphi} \mathbb{R} \to c(M)$ such that

$$\Pi_{\varphi} \circ \theta^{\varphi} = \theta \circ \Pi_{\varphi}, \qquad \mathsf{Tr}_{\varphi} = \mathsf{Tr} \circ \Pi_{\varphi}, \qquad \Pi_{\varphi}(\pi_{\sigma}(x)) = x \,\,\forall x \in M.$$

• Takesaki's duality theorem implies $c(M) \rtimes_{\theta} \mathbb{R} \cong M \bar{\otimes} \mathcal{B}(L^{2}(\mathbb{R}))$. In particular, M is amenable if and only if c(M) is amenable.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

 For a nonsingular action Γ ∩ (X, μ) on a standard measure space, the Maharam extension Γ ∩ (X × ℝ, m) is given by

$$g \cdot (x, t) = \left(g \cdot x, t + \log\left(\frac{d\mu \circ g^{-1}}{d\mu}(x)\right)\right),$$

and $dm = d\mu \times e^t dt$. This action is *m*-preserving, although *m* is an infinite measure.

イロト イポト イヨト イヨト 二日

 For a nonsingular action Γ ∩ (X, μ) on a standard measure space, the Maharam extension Γ ∩ (X × ℝ, m) is given by

$$g \cdot (x, t) = \left(g \cdot x, t + \log\left(\frac{d\mu \circ g^{-1}}{d\mu}(x)\right)\right),$$

and $dm = d\mu \times e^t dt$. This action is *m*-preserving, although *m* is an infinite measure.

• $c(L^{\infty}(X) \rtimes \Gamma) = L^{\infty}(X \times \mathbb{R}) \rtimes \Gamma.$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

 For a nonsingular action Γ ∩ (X, μ) on a standard measure space, the Maharam extension Γ ∩ (X × ℝ, m) is given by

$$g \cdot (x, t) = \left(g \cdot x, t + \log\left(\frac{d\mu \circ g^{-1}}{d\mu}(x)\right)\right),$$

and $dm = d\mu \times e^t dt$. This action is *m*-preserving, although *m* is an infinite measure.

- $c(L^{\infty}(X) \rtimes \Gamma) = L^{\infty}(X \times \mathbb{R}) \rtimes \Gamma.$
- In terms of equivalence relations, if $\mathcal{R} = \mathcal{R}(\Gamma \curvearrowright X)$ and $L(\mathcal{R}) = L^{\infty}(X) \rtimes \Gamma$ and if we denote $c(\mathcal{R}) = \mathcal{R}(\Gamma \curvearrowright X \times \mathbb{R})$ then $c(L(\mathcal{R})) = L(c(\mathcal{R}))$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Theorem 2.1

Let Γ be any group in the class \mathcal{QH}_{reg} and $\Gamma \curvearrowright (X, \mu)$ any free nonsingular action on a standard measure space. Let $V \subset X$ be a non-negligible subset. Every nonamenable recurrent subequivalence relation of $\mathcal{R}(\Gamma \curvearrowright X)|_V$ is indecomposable.

イロト イポト イヨト イヨト 三日

SQA

Theorem 3.1

Let M be any σ -finite von Neumann algebra. Let $A \subset 1_A M 1_A$ and $B \subset 1_B M 1_B$ be von Neumann subalgebras such that B is finite and with expectation $E_B \colon 1_B M 1_B \to B$. The following are equivalent:

- (1) There exist $n \ge 1$, a possibly nonunital normal *-homomorphism $\pi: A \to M_n(B)$ and a nonzero partial isometry $v \in M_{1,n}(1_A M 1_B)$ such that $av = v\pi(a)$ for all $a \in A$.
- (2) There is no net of unitaries $(w_i) \subset U(A)$ such that $E_B(x^*w_iy) \to 0$ *-strongly for all $x, y \in 1_A M 1_B$.

・ロト ・ 同ト ・ ヨト ・ ヨ・

• Fix faithful normal tracial state τ on B and define $\varphi(x) = \tau(E_B(x))$ for $x \in 1_B M 1_B$, extend to faithful normal positive functional on M.

イロト イポト イヨト イヨト

- Fix faithful normal tracial state τ on B and define $\varphi(x) = \tau(E_B(x))$ for $x \in 1_B M 1_B$, extend to faithful normal positive functional on M.
- Denote H := J1_BJL²(M, φ), Mz is faithfully represented on H where z is central support of 1_B in M. Let e_B denote the orthogonal projection of H onto L²(B, τ) ⊂ H.

- Fix faithful normal tracial state τ on B and define $\varphi(x) = \tau(E_B(x))$ for $x \in 1_B M 1_B$, extend to faithful normal positive functional on M.
- Denote $\mathcal{H} := J1_B JL^2(M, \varphi)$, Mz is faithfully represented on \mathcal{H} where z is central support of 1_B in M. Let e_B denote the orthogonal projection of \mathcal{H} onto $L^2(B, \tau) \subset \mathcal{H}$.
- Consider N := B(H) ∩ (JBJ)', and realize that the faithful trace τ on B implies there is a canonical faithful normal semifinite trace Tr on N satisfying Tr(TT*) = τ(T*T) for all bounded right B-linear maps T: L²(B, τ) → H. Also, e_B ∈ N with Tr(e_B) = 1.

- Fix faithful normal tracial state τ on B and define $\varphi(x) = \tau(E_B(x))$ for $x \in 1_B M 1_B$, extend to faithful normal positive functional on M.
- Denote $\mathcal{H} := J1_B JL^2(M, \varphi)$, Mz is faithfully represented on \mathcal{H} where z is central support of 1_B in M. Let e_B denote the orthogonal projection of \mathcal{H} onto $L^2(B, \tau) \subset \mathcal{H}$.
- Consider N := B(H) ∩ (JBJ)', and realize that the faithful trace τ on B implies there is a canonical faithful normal semifinite trace Tr on N satisfying Tr(TT*) = τ(T*T) for all bounded right B-linear maps T: L²(B, τ) → H. Also, e_B ∈ N with Tr(e_B) = 1.
- Regard Mz as a von Neumann subalgebra of \mathcal{N} , since it acts faithfully on \mathcal{H} .

Э

- 4 同 ト 4 目 ト

• On bounded subsets of *B*, strong* topology coincides with $\|\cdot\|_2$ -topology. So (2) implies $\exists \delta > 0$ and a finite subset $\mathcal{F} \subset 1_A M 1_B$ such that

$$\sum_{{\mathrm{x}},{\mathrm{y}}\in\mathcal{F}}\|\mathcal{E}_B({\mathrm{x}}^*w{\mathrm{y}})\|_2^2\geq\delta$$
 for all $w\in\mathcal{U}(A).$

Э

nac

・ロト ・ 日 ト ・ モ ト ・ モ ト

• On bounded subsets of *B*, strong* topology coincides with $\|\cdot\|_2$ -topology. So (2) implies $\exists \delta > 0$ and a finite subset $\mathcal{F} \subset 1_A M 1_B$ such that

$$\sum_{x,y\in\mathcal{F}}\|\mathcal{E}_B(x^*wy)\|_2^2\geq\delta$$
 for all $w\in\mathcal{U}(A).$

• By considering $\xi = \sum_{x \in \mathcal{F}} xe_B x^* \in \mathcal{N}_+$, taking minimal element of $\|\cdot\|_{2,\mathrm{Tr}}$ -norm in the weak closure of convex hull of $\{w\xi w^* \colon w \in \mathcal{U}(A)\}$, and taking a suitable spectral projection we can find a nonzero projection $p \in A' \cap 1_A \mathcal{N} 1_A$ such that $\mathrm{Tr}(p) < \infty$.

3

イロト イポト イヨト イヨト

• On bounded subsets of *B*, strong* topology coincides with $\|\cdot\|_2$ -topology. So (2) implies $\exists \delta > 0$ and a finite subset $\mathcal{F} \subset 1_A M 1_B$ such that

$$\sum_{x,y\in\mathcal{F}}\|\mathcal{E}_B(x^*wy)\|_2^2\geq\delta$$
 for all $w\in\mathcal{U}(A).$

- By considering $\xi = \sum_{x \in \mathcal{F}} xe_B x^* \in \mathcal{N}_+$, taking minimal element of $\|\cdot\|_{2,\mathrm{Tr}}$ -norm in the weak closure of convex hull of $\{w\xi w^* \colon w \in \mathcal{U}(A)\}$, and taking a suitable spectral projection we can find a nonzero projection $p \in A' \cap 1_A \mathcal{N} 1_A$ such that $\mathrm{Tr}(p) < \infty$.
- pH is a nonzero A B-bimodule with finite dimension over B. Can find $\mathcal{K} \subset pH$ a nonzero A B-subbimodule which is finitely generate as a right B-module.

イロト イポト イヨト イヨト

 Let n ≥ 1 and q ∈ M_n(B) a nonzero projection such that there exists a right B-module isomorphism ψ: K_B → (qL²(B)^{⊕n})_B.

3

< / ₽ ▶ < ∃ ▶

- Let n ≥ 1 and q ∈ M_n(B) a nonzero projection such that there exists a right B-module isomorphism ψ: K_B → (qL²(B)^{⊕n})_B.
- Let $\pi: A \to qM_n(B)q$ be the unital *-homomorphism such that $\psi(a\zeta) = \pi(a)\psi(\zeta)$ for all $a \in A$ and all $\zeta \in \mathcal{K}$.

- Let n ≥ 1 and q ∈ M_n(B) a nonzero projection such that there exists a right B-module isomorphism ψ: K_B → (qL²(B)^{⊕n})_B.
- Let $\pi: A \to qM_n(B)q$ be the unital *-homomorphism such that $\psi(a\zeta) = \pi(a)\psi(\zeta)$ for all $a \in A$ and all $\zeta \in \mathcal{K}$.
- Take $\xi_i \in \mathcal{K}$ with $\psi(\xi_i) = q(0, \dots, 0, 1_B, 0, \dots, 0)$. Then $\xi = (\xi_i) \in M_{1,n}(\mathbb{C}) \otimes \mathcal{K}$ satisfies $a\xi = J\pi(a)^* J\xi$ for all $a \in A$.

- Let n ≥ 1 and q ∈ M_n(B) a nonzero projection such that there exists a right B-module isomorphism ψ: K_B → (qL²(B)^{⊕n})_B.
- Let $\pi: A \to qM_n(B)q$ be the unital *-homomorphism such that $\psi(a\zeta) = \pi(a)\psi(\zeta)$ for all $a \in A$ and all $\zeta \in \mathcal{K}$.
- Take $\xi_i \in \mathcal{K}$ with $\psi(\xi_i) = q(0, \dots, 0, 1_B, 0, \dots, 0)$. Then $\xi = (\xi_i) \in M_{1,n}(\mathbb{C}) \otimes \mathcal{K}$ satisfies $a\xi = J\pi(a)^* J\xi$ for all $a \in A$.
- The polar decomposition of ξ in the standard representation of M_n(M) yields the desired partial isometry v.

- 4 戸 ト 4 日 ト - 日 日

- Let n ≥ 1 and q ∈ M_n(B) a nonzero projection such that there exists a right B-module isomorphism ψ: K_B → (qL²(B)^{⊕n})_B.
- Let $\pi: A \to qM_n(B)q$ be the unital *-homomorphism such that $\psi(a\zeta) = \pi(a)\psi(\zeta)$ for all $a \in A$ and all $\zeta \in \mathcal{K}$.
- Take $\xi_i \in \mathcal{K}$ with $\psi(\xi_i) = q(0, \dots, 0, 1_B, 0, \dots, 0)$. Then $\xi = (\xi_i) \in M_{1,n}(\mathbb{C}) \otimes \mathcal{K}$ satisfies $a\xi = J\pi(a)^*J\xi$ for all $a \in A$.
- The polar decomposition of ξ in the standard representation of M_n(M) yields the desired partial isometry v.

Definition 3.2

If either of the two equivalent conditions in Theorem 3.1 holds, then we say A embeds into B inside M and denote $A \preceq_M B$.

◆ロ > ◆母 > ◆臣 > ◆臣 >

Lemma 3.3

Let *M* be a von Neumann algebra with a separable predual. Let $A \subset 1_A M 1_A$ and $B \subset M$ be unital von Neumann subalgebras with expectations. Assume that *B* is abelian and that for every nonzero projection $p \in A$, we have $pAp \not\preceq_M B$. Then there exists a diffuse abelian *-subalgebra $D \subset A$ with expectation such that $D \not\prec_M B$.

Lemma 3.3

Let M be a von Neumann algebra with a separable predual. Let $A \subset 1_A M 1_A$ and $B \subset M$ be unital von Neumann subalgebras with expectations. Assume that B is abelian and that for every nonzero projection $p \in A$, we have $pAp \not\preceq_M B$. Then there exists a diffuse abelian *-subalgebra $D \subset A$ with expectation such that $D \not\preceq_M B$.

Proof.
Lemma 3.3

Let *M* be a von Neumann algebra with a separable predual. Let $A \subset 1_A M 1_A$ and $B \subset M$ be unital von Neumann subalgebras with expectations. Assume that *B* is abelian and that for every nonzero projection $p \in A$, we have $pAp \not\preceq_M B$. Then there exists a diffuse abelian *-subalgebra $D \subset A$ with expectation such that $D \not\preceq_M B$.

Proof.

Find z ∈ Z(A) such that Az is type I and A(1_A − z) has no type I direct summand.

Lemma 3.3

Let *M* be a von Neumann algebra with a separable predual. Let $A \subset 1_A M 1_A$ and $B \subset M$ be unital von Neumann subalgebras with expectations. Assume that *B* is abelian and that for every nonzero projection $p \in A$, we have $pAp \not\preceq_M B$. Then there exists a diffuse abelian *-subalgebra $D \subset A$ with expectation such that $D \not\preceq_M B$.

Proof.

- Find z ∈ Z(A) such that Az is type I and A(1_A − z) has no type I direct summand.
- Fix $D_0 \subset Az$ unital maximal abelian *-subalgebra with expectation, it follows that $D_0 \not\preceq_M B$.

In A(1_A − z), inductively construct an increasing sequence (Q_n) of unital abelian finite dimensional *-subalgebras of A(1_A − z) and unitaries w_n ∈ Q_n such that ||E_B(x_i^{*}w_ix_j)||_{2,τ∘E_B} < n⁻¹, where {x_i}_{i∈ℕ} ⊂ (1_A − z)M is dense with respect to the || · ||_{2,τ∘E_B}-norm.

In A(1_A − z), inductively construct an increasing sequence (Q_n) of unital abelian finite dimensional *-subalgebras of A(1_A − z) and unitaries w_n ∈ Q_n such that ||E_B(x_i^{*}w_ix_j)||_{2,τ∘E_B} < n⁻¹, where {x_i}_{i∈ℕ} ⊂ (1_A − z)M is dense with respect to the || · ||_{2,τ∘E_B}-norm.

• Set
$$D_1 := \bigvee_n Q_n$$
, then $D_1 \not\preceq_M B$.

- In A(1_A − z), inductively construct an increasing sequence (Q_n) of unital abelian finite dimensional *-subalgebras of A(1_A − z) and unitaries w_n ∈ Q_n such that ||E_B(x_i^{*}w_ix_j)||_{2,τ◦E_B} < n⁻¹, where {x_i}_{i∈ℕ} ⊂ (1_A − z)M is dense with respect to the || · ||_{2,τ◦E_B}-norm.
- Set $D_1 := \bigvee_n Q_n$, then $D_1 \not\leq_M B$.
- $D = D_0 \otimes D_1$ is a unital diffuse abelian *-subalgebra with expectation such that $D \not\preceq_M B$.

Definition 3.4

An equivalence relation \mathcal{R} is *amenable* if there exists a state Ω on $L^{\infty}(\mathcal{R})$ satisfying

$$\begin{split} \Omega(F) &= \int_X F(x) \ d\mu(x) \qquad \text{for all } F \in L^\infty(X), \text{ and} \\ \Omega(u(\psi)Fu(\psi)^*) &= \Omega(F) \qquad \text{for all } \psi \in [\mathcal{R}], \ F \in L^\infty(\mathcal{R}) \end{split}$$

Lemma 3.5

A countable pmp equivalence relation \mathcal{R} is amenable if and only if for all non-negligible \mathcal{R} -invariant measurable subsets $U \subset X$ and all $\psi_1, \ldots, \psi_n \in [\mathcal{R}]$, we have

$$\left\|\sum_{k=1}^{n} u(\psi_k) \mathbf{1}_U \otimes J u(\psi_k) \mathbf{1}_U J\right\|_{\min} = n.$$
(1)

(日)

Brent Nelson (UCLA)

Э

nac

• By a lemma in [3], (1) is equivalent to the existence of a state Ω on $L^{\infty}(\mathcal{R})$ satisfying

$$\Omega(F) = \int_X F(x) \ d\mu(x)$$
$$\Omega(u(\psi)Fu(\psi)^*) = \Omega(F)$$

for all
$$F \in L^{\infty}(X)^{\mathcal{R}}$$
, and

for all
$$\psi \in [\mathcal{R}], \; F \in L^\infty(\mathcal{R})$$

< □ > < 同 > < 回 >

- 4 E

Э

nac

• By a lemma in [3], (1) is equivalent to the existence of a state Ω on $L^{\infty}(\mathcal{R})$ satisfying

$$\Omega(F) = \int_X F(x) \ d\mu(x)$$
 for all $F \in L^{\infty}(X)^{\mathcal{R}}$, and
 $\Omega(u(\psi)Fu(\psi)^*) = \Omega(F)$ for all $\psi \in [\mathcal{R}], F \in L^{\infty}(\mathcal{R})$

• So it suffices to show $\Omega(1_V) = \mu(V)$ for any $V \subset X$. Define mean $\Psi(V) := \Omega(1_V)$.

• Case 1: \mathcal{R} is homogeneous type I_n , $1 \le n < \infty$.

Э

990

イロト イポト イヨト イヨト

- Case 1: \mathcal{R} is homogeneous type I_n , $1 \le n < \infty$.
- $\exists V \subset X$ with $\mu(V) = \frac{1}{n}$, and $\psi_1, \dots, \psi_n \in [\mathcal{R}]$ such that for a.e. $x \in V$, $\{\psi_1(x), \dots, \psi_n(x)\}$ is equivalence class of x.

э

< E.

Image: A image: A

nac

- Case 1: \mathcal{R} is homogeneous type I_n , $1 \le n < \infty$.
- $\exists V \subset X$ with $\mu(V) = \frac{1}{n}$, and $\psi_1, \dots, \psi_n \in [\mathcal{R}]$ such that for a.e. $x \in V$, $\{\psi_1(x), \dots, \psi_n(x)\}$ is equivalence class of x.
- For $U \subset V$, $\psi_k(U)$ are disjoint and union is \mathcal{R} -invariant so:

$$n\mu(U) = \mu\left(\bigcup_{k=1}^{n} \psi_k(U)\right) = \Psi\left(\bigcup_{k=1}^{n} \psi_k(U)\right)$$
$$= \sum_{k=1}^{n} \Psi(\psi_k(U)) = n\Psi(U)$$

< A > <

- Case 1: \mathcal{R} is homogeneous type I_n , $1 \le n < \infty$.
- $\exists V \subset X$ with $\mu(V) = \frac{1}{n}$, and $\psi_1, \dots, \psi_n \in [\mathcal{R}]$ such that for a.e. $x \in V$, $\{\psi_1(x), \dots, \psi_n(x)\}$ is equivalence class of x.
- For $U \subset V$, $\psi_k(U)$ are disjoint and union is \mathcal{R} -invariant so:

$$n\mu(U) = \mu\left(\bigcup_{k=1}^{n}\psi_{k}(U)\right) = \Psi\left(\bigcup_{k=1}^{n}\psi_{k}(U)\right)$$
$$= \sum_{k=1}^{n}\Psi(\psi_{k}(U)) = n\Psi(U)$$

Then by ψ_k-invariance, μ(U) = Ψ(U) for all U ⊂ ψ_k(V), hence for all U ⊂ X by finite additivity.

• Case 2: \mathcal{R} is homogeneous of type II₁.

3

990

イロト イポト イヨト イヨト

- Case 2: \mathcal{R} is homogeneous of type II₁.
- Let E: L[∞](X) → L[∞](X)^R be trace preserving conditional expectation.

Sac

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- Case 2: \mathcal{R} is homogeneous of type II₁.
- Let E: L[∞](X) → L[∞](X)^R be trace preserving conditional expectation.
- Can write L[∞](X)^R = L[∞](Y, η) with (Y, η) a standard probability space, and can write (X, μ) as a direct integral over (Y, η) of a measurable field of standard probability spaces isomorphic to ([0, 1], dx) (as R is type II₁).

- 4 戸 ト 4 日 ト - 日 日

- Case 2: \mathcal{R} is homogeneous of type II₁.
- Let E: L[∞](X) → L[∞](X)^R be trace preserving conditional expectation.
- Can write L[∞](X)^R = L[∞](Y, η) with (Y, η) a standard probability space, and can write (X, μ) as a direct integral over (Y, η) of a measurable field of standard probability spaces isomorphic to ([0, 1], dx) (as R is type II₁).
- There is an isomorphism of probability spaces θ: [0,1] × Y → X such that F(θ(t, y)) = F(y) for all F ∈ L[∞](Y) = L[∞](X)^R and a.e. (t, y) ∈ [0,1] × Y. Also (E(F))(y) = ∫₀¹ F(θ(t, y)) dt for all F ∈ L[∞](X) and a.e. y ∈ Y.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

• Given $G: Y \rightarrow [0,1]$ define

$$\mathcal{W}(G) := \{(t,y) \colon 0 \leq t \leq G(y)\} \subset [0,1] \times Y,$$

and let $\mathcal{V}(G) = \theta(\mathcal{W}(G))$.

Brent Nelson (UCLA)

• Given $G: Y \rightarrow [0,1]$ define

$$\mathcal{W}(G) := \{(t,y) \colon 0 \leq t \leq G(y)\} \subset [0,1] \times Y,$$

and let $\mathcal{V}(G) = \theta(\mathcal{W}(G))$.

 For measurable U ⊂ X, if G = E(1_U) then E(1_{V(G)}) = E(1_U) and hence ∃ψ ∈ [R] with ψ(U) = V(G).

• Given $G: Y \rightarrow [0,1]$ define

$$\mathcal{W}(G) := \{(t,y) \colon 0 \leq t \leq G(y)\} \subset [0,1] \times Y,$$

and let $\mathcal{V}(G) = \theta(\mathcal{W}(G))$.

- For measurable U ⊂ X, if G = E(1_U) then E(1_{V(G)}) = E(1_U) and hence ∃ψ ∈ [R] with ψ(U) = V(G).
- $[\mathcal{R}]$ -invariance of μ and Ψ imply it suffices to show $\mu(\mathcal{V}(G)) = \Psi(\mathcal{V}(G))$ whenever $G \colon Y \to [0,1]$ is measurable.

• Given $G: Y \rightarrow [0,1]$ define

$$\mathcal{W}(G) := \{(t,y) \colon 0 \leq t \leq G(y)\} \subset [0,1] \times Y,$$

and let $\mathcal{V}(G) = \theta(\mathcal{W}(G))$.

- For measurable $U \subset X$, if $G = E(1_U)$ then $E(1_{\mathcal{V}(G)}) = E(1_U)$ and hence $\exists \psi \in [\mathcal{R}]$ with $\psi(U) = \mathcal{V}(G)$.
- $[\mathcal{R}]$ -invariance of μ and Ψ imply it suffices to show $\mu(\mathcal{V}(G)) = \Psi(\mathcal{V}(G))$ whenever $G \colon Y \to [0,1]$ is measurable.
- Partitioning Y with respect to to the range of G, multiplying this partition by [0, 1], and feeding these sets through θ yields a partition of X into \mathcal{R} -invariant sets.

• Given $G: Y \rightarrow [0,1]$ define

$$\mathcal{W}(G) := \{(t,y) \colon 0 \leq t \leq G(y)\} \subset [0,1] \times Y,$$

and let $\mathcal{V}(G) = \theta(\mathcal{W}(G))$.

- For measurable $U \subset X$, if $G = E(1_U)$ then $E(1_{\mathcal{V}(G)}) = E(1_U)$ and hence $\exists \psi \in [\mathcal{R}]$ with $\psi(U) = \mathcal{V}(G)$.
- $[\mathcal{R}]$ -invariance of μ and Ψ imply it suffices to show $\mu(\mathcal{V}(G)) = \Psi(\mathcal{V}(G))$ whenever $G \colon Y \to [0,1]$ is measurable.
- Partitioning Y with respect to to the range of G, multiplying this partition by [0, 1], and feeding these sets through θ yields a partition of X into \mathcal{R} -invariant sets.
- Then by further partitioning [0, 1], one is able to show $|\mu(\mathcal{V}(G)) \Psi(\mathcal{V}(G))| < n^{-1}$ for all n.

• Case 3: General \mathcal{R} .

イロト イポト イヨト イヨト

• Case 3: General \mathcal{R} .

Partition X into R-invariant measurable subsets V and (V_n)_{n=1}[∞] such that R |_V is of type II₁ and R |_{V_n} is of type I_n.

3

• Case 3: General R.

- Partition X into R-invariant measurable subsets V and (V_n)_{n=1}[∞] such that R |_V is of type II₁ and R |_{V_n} is of type I_n.
- From previous two cases and finite additivity we know μ(U) = Ψ(U) whenever U ⊂ V ∪ ⋃_{n∈F} V_n for F ⊂ ℕ finite.

• Case 3: General \mathcal{R} .

- Partition X into *R*-invariant measurable subsets V and (V_n)_{n=1}[∞] such that *R* |_V is of type II₁ and *R* |_{V_n} is of type I_n.
- From previous two cases and finite additivity we know μ(U) = Ψ(U) whenever U ⊂ V ∪ ⋃_{n∈F} V_n for F ⊂ ℕ finite.
- Fix ε > 0 and choose F large enough, yet finite, so that μ(∪_{n∉F} V_n) < ε. This union is *R*-invariant so same inequality holds for Ψ. Then for any measurable U ⊂ X we have |μ(U) − Ψ(U)| < 2ε.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 Fix a nonsingular free action Γ → (X, μ) and V ⊂ X a non-negligible subset.

590

프 > 프

< 17 ▶

- Fix a nonsingular free action Γ ∩ (X, μ) and V ⊂ X a non-negligible subset.
- Denote $\mathcal{R} = \mathcal{R}(\Gamma \curvearrowright X)$, $M = L^{\infty}(X) \rtimes \Gamma = L(\mathcal{R})$.

-

< 一型

Э

nac

- Fix a nonsingular free action Γ ∩ (X, μ) and V ⊂ X a non-negligible subset.
- Denote $\mathcal{R} = \mathcal{R}(\Gamma \frown X)$, $M = L^{\infty}(X) \rtimes \Gamma = L(\mathcal{R})$.
- Assume $V = X_1 \times X_2$ and that there are recurrent nonsingular equivalence relations S_i on X_i such that $S_1 \times S_2 \subset \mathcal{R} \mid_V$.

э

-

- Fix a nonsingular free action Γ ∩ (X, μ) and V ⊂ X a non-negligible subset.
- Denote $\mathcal{R} = \mathcal{R}(\Gamma \frown X)$, $M = L^{\infty}(X) \rtimes \Gamma = L(\mathcal{R})$.
- Assume $V = X_1 \times X_2$ and that there are recurrent nonsingular equivalence relations S_i on X_i such that $S_1 \times S_2 \subset \mathcal{R} \mid_V$.
- Need to show the S_i are amenable and by symmetry suffices to show S_2 is amenable.

글 > 글

- Fix a nonsingular free action Γ ∩ (X, μ) and V ⊂ X a non-negligible subset.
- Denote $\mathcal{R} = \mathcal{R}(\Gamma \frown X)$, $M = L^{\infty}(X) \rtimes \Gamma = L(\mathcal{R})$.
- Assume $V = X_1 \times X_2$ and that there are recurrent nonsingular equivalence relations S_i on X_i such that $S_1 \times S_2 \subset \mathcal{R} \mid_V$.
- Need to show the S_i are amenable and by symmetry suffices to show S_2 is amenable.
- Denote P_i = L(S_i) and e = 1_V, then P₁⊗P₂ ⊂ eMe with expectation and hence P_i ⊂ eMe with expectation.

글 > 글

- Fix a nonsingular free action Γ → (X, μ) and V ⊂ X a non-negligible subset.
- Denote $\mathcal{R} = \mathcal{R}(\Gamma \curvearrowright X)$, $M = L^{\infty}(X) \rtimes \Gamma = L(\mathcal{R})$.
- Assume $V = X_1 \times X_2$ and that there are recurrent nonsingular equivalence relations S_i on X_i such that $S_1 \times S_2 \subset \mathcal{R} \mid_V$.
- Need to show the S_i are amenable and by symmetry suffices to show S_2 is amenable.
- Denote $P_i = L(S_i)$ and $e = 1_V$, then $P_1 \overline{\otimes} P_2 \subset eMe$ with expectation and hence $P_i \subset eMe$ with expectation.
- Recurrence of $S_1 \Rightarrow P_1$ has no type I direct summand so condition (1) in definition implies $pP_1p \not\preceq_M L^{\infty}(X)$ for every nonzero projection $p \in P_1$. Then Lemma 3.3 implies $\exists A \subset P_1$ diffuse abelian *-subalgebra with expectation such that $A \not\preceq_M L^{\infty}(X)$.

3

- ₹ ₹ ►

< □ > < 同 > < 回 >

Let Γ → X × ℝ be the Maharam extension and give X × ℝ canonical infinite Γ-invariant measure m.

3

< 日 > < 同 > < 三 > < 三 >

SQA

- Let Γ → X × ℝ be the Maharam extension and give X × ℝ canonical infinite Γ-invariant measure m.
- Denote $c(\mathcal{R}) = \mathcal{R}(\Gamma \curvearrowright X \times \mathbb{R})$, then $c(\mathcal{R})$ is II_{∞} , $c(\mathcal{S}_2) \subset ec(\mathcal{R})e$, $c(M) = L(c(\mathcal{R}))$, and $c(P_2) = L(c(\mathcal{S}_2))$.

- Let Γ → X × ℝ be the Maharam extension and give X × ℝ canonical infinite Γ-invariant measure m.
- Denote $c(\mathcal{R}) = \mathcal{R}(\Gamma \curvearrowright X \times \mathbb{R})$, then $c(\mathcal{R})$ is II_{∞} , $c(\mathcal{S}_2) \subset ec(\mathcal{R})e$, $c(M) = L(c(\mathcal{R}))$, and $c(P_2) = L(c(\mathcal{S}_2))$.
- Choose an arbitrary $U \subset V \times \mathbb{R}$ of finite measure and denote $p = 1_U \in L^{\infty}(X \times \mathbb{R})$. It suffices to show $c(S_2) \mid_U$ is amenable, which, upon rescaling the trace, is a countable pmp equivalence relation.

- Let Γ → X × ℝ be the Maharam extension and give X × ℝ canonical infinite Γ-invariant measure m.
- Denote $c(\mathcal{R}) = \mathcal{R}(\Gamma \curvearrowright X \times \mathbb{R})$, then $c(\mathcal{R})$ is II_{∞} , $c(\mathcal{S}_2) \subset ec(\mathcal{R})e$, $c(M) = L(c(\mathcal{R}))$, and $c(P_2) = L(c(\mathcal{S}_2))$.
- Choose an arbitrary $U \subset V \times \mathbb{R}$ of finite measure and denote $p = 1_U \in L^{\infty}(X \times \mathbb{R})$. It suffices to show $c(S_2) \mid_U$ is amenable, which, upon rescaling the trace, is a countable pmp equivalence relation.
- Let G := [c(S₂) |_U] be the full group. For each ψ ∈ G we have canonical unitary u(ψ) ∈ pc(P₂)p.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

 By Lemma 3.5, suffices to prove for every projection z ∈ Z(pc(P₂)p) and all ψ₁,..., ψ_n ∈ G that

$$\left\|\sum_{k=1}^n u(\psi_k) z \otimes J u(\psi_k) z J\right\|_{\min} = n$$

Э

nac

イロト イポト イヨト イヨト
By Lemma 3.5, suffices to prove for every projection z ∈ Z(pc(P₂)p) and all ψ₁,..., ψ_n ∈ G that

$$\left\|\sum_{k=1}^n u(\psi_k) z \otimes J u(\psi_k) z J\right\|_{\min} = n.$$

 Denote by *E* ⊂ *c*(*P*₂) the finite dimensional operator space spanned by

$$\{1\} \cup \{u(\psi_1)z,\ldots,u(\psi_n)z\} \cup \{u(\psi_1)^*z,\ldots,u(\psi_n)^*z\}.$$

Э

nac

イロト イポト イヨト イヨト

 By Lemma 3.5, suffices to prove for every projection z ∈ Z(pc(P₂)p) and all ψ₁,..., ψ_n ∈ G that

$$\left\|\sum_{k=1}^n u(\psi_k) z \otimes J u(\psi_k) z J\right\|_{\min} = n.$$

 Denote by *E* ⊂ *c*(*P*₂) the finite dimensional operator space spanned by

$$\{1\} \cup \{u(\psi_1)z,\ldots,u(\psi_n)z\} \cup \{u(\psi_1)^*z,\ldots,u(\psi_n)^*z\}.$$

• We construct completely positive contractive maps $\varphi_i \colon \mathcal{E} \to L^{\infty}(X \times \mathbb{R}) \rtimes_{\mathsf{red}} \Gamma$ such that $\varphi_i(x)p \to xp$ *-strongly for all $x \in \mathcal{E}$.

3

イロト イポト イヨト イヨト

• For each k find partitions $(U_g^k)_{g\in\Gamma}$ and $(V_g^k)_{g\in\Gamma}$ of U such that $\psi_k(y) = g \cdot y$ for a.e. $y \in U_g^k$ and $\psi_k^{-1}(y) = g \cdot y$ for a.e. $y \in V_g^k$.

- For each k find partitions $(U_g^k)_{g\in\Gamma}$ and $(V_g^k)_{g\in\Gamma}$ of U such that $\psi_k(y) = g \cdot y$ for a.e. $y \in U_g^k$ and $\psi_k^{-1}(y) = g \cdot y$ for a.e. $y \in V_g^k$.
- Then for any $\epsilon > 0$ we can find $F_k \subset G$ finite such that $m\left(\bigcup_{g \notin F_k} U_g^k \cup V_g^k\right) < \frac{\epsilon}{n}$.

- For each k find partitions $(U_g^k)_{g\in\Gamma}$ and $(V_g^k)_{g\in\Gamma}$ of U such that $\psi_k(y) = g \cdot y$ for a.e. $y \in U_g^k$ and $\psi_k^{-1}(y) = g \cdot y$ for a.e. $y \in V_g^k$.
- Then for any $\epsilon > 0$ we can find $F_k \subset G$ finite such that $m\left(\bigcup_{g \notin F_k} U_g^k \cup V_g^k\right) < \frac{\epsilon}{n}$.
- Let $p_k^{\epsilon} = 1_{\bigcup_{g \notin F_k} U_g^{k} \cup V_g^{k}}$ and define $p^{\epsilon} = \bigvee_k p_k^{\epsilon}$. Then $\int p^{\epsilon} dm < \epsilon$ and $u(\psi_k)(1-p^{\epsilon})$ and $u(\psi_k)^*(1-p^{\epsilon})$ are supported on finitely many $g \in \Gamma$.

- For each k find partitions $(U_g^k)_{g\in\Gamma}$ and $(V_g^k)_{g\in\Gamma}$ of U such that $\psi_k(y) = g \cdot y$ for a.e. $y \in U_g^k$ and $\psi_k^{-1}(y) = g \cdot y$ for a.e. $y \in V_g^k$.
- Then for any $\epsilon > 0$ we can find $F_k \subset G$ finite such that $m\left(\bigcup_{g \notin F_k} U_g^k \cup V_g^k\right) < \frac{\epsilon}{n}$.
- Let $p_k^{\epsilon} = 1_{\bigcup_{g \notin F_k} U_g^{k} \cup V_g^{k}}$ and define $p^{\epsilon} = \bigvee_k p_k^{\epsilon}$. Then $\int p^{\epsilon} dm < \epsilon$ and $u(\psi_k)(1-p^{\epsilon})$ and $u(\psi_k)^*(1-p^{\epsilon})$ are supported on finitely many $g \in \Gamma$.
- So $p_i := 1 p^{1/i}$ is a sequence converging to $p = 1_U$ strongly such that $u(\psi_k)p_i, u(\psi_k)^*p_i \in L^{\infty}(X \times \mathbb{R}) \rtimes_{\text{alg}} \Gamma$ for all k = 1, ..., n and all *i*.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- For each k find partitions $(U_g^k)_{g\in\Gamma}$ and $(V_g^k)_{g\in\Gamma}$ of U such that $\psi_k(y) = g \cdot y$ for a.e. $y \in U_g^k$ and $\psi_k^{-1}(y) = g \cdot y$ for a.e. $y \in V_g^k$.
- Then for any $\epsilon > 0$ we can find $F_k \subset G$ finite such that $m\left(\bigcup_{g \notin F_k} U_g^k \cup V_g^k\right) < \frac{\epsilon}{n}$.
- Let $p_k^{\epsilon} = 1_{\bigcup_{g \notin F_k} U_g^{k} \cup V_g^{k}}$ and define $p^{\epsilon} = \bigvee_k p_k^{\epsilon}$. Then $\int p^{\epsilon} dm < \epsilon$ and $u(\psi_k)(1-p^{\epsilon})$ and $u(\psi_k)^*(1-p^{\epsilon})$ are supported on finitely many $g \in \Gamma$.
- So $p_i := 1 p^{1/i}$ is a sequence converging to $p = 1_U$ strongly such that $u(\psi_k)p_i, u(\psi_k)^*p_i \in L^{\infty}(X \times \mathbb{R}) \rtimes_{\text{alg}} \Gamma$ for all k = 1, ..., n and all *i*.

• Define
$$\varphi_i(x) = p_i x p_i$$
.

・ロト ・雪ト ・ヨト ・ヨー

 Let H ⊂ L²_ℝ(Y, ν) =: D be the Gaussian construction associated with the representation π: G → U(H) and the proper map c: G → H ⊂ D (from the definition of QH_{reg}) and define M̃ = (D⊗L[∞](X)) ⋊ Γ.

< 17 ▶

• Let $H \subset L^2_{\mathbb{R}}(Y,\nu) =: D$ be the Gaussian construction associated with the representation $\pi: G \to \mathcal{U}(H)$ and the proper map $c: G \to H \subset D$ (from the definition of \mathcal{QH}_{reg}) and define $\tilde{M} = (D \otimes L^{\infty}(X)) \rtimes \Gamma$.

Define

$$\begin{aligned} \mathcal{H} &= L^2(c(M)) = L^2(c(L^{\infty}(X))) \otimes l^2(\Gamma), \text{ and} \\ \tilde{\mathcal{H}} &= L^2(c(\tilde{M})) = L^2(D) \otimes L^2(c(L^{\infty}(X))) \otimes l^2(\Gamma). \end{aligned}$$

and define a partial isometry $v \colon \mathcal{H} \to \tilde{\mathcal{H}}$ by $v(\eta \otimes \delta_g) = 1 \otimes \eta \otimes \delta_g$.

• Let $H \subset L^2_{\mathbb{R}}(Y,\nu) =: D$ be the Gaussian construction associated with the representation $\pi: G \to \mathcal{U}(H)$ and the proper map $c: G \to H \subset D$ (from the definition of \mathcal{QH}_{reg}) and define $\tilde{M} = (D \otimes L^{\infty}(X)) \rtimes \Gamma$.

Define

$$\begin{aligned} \mathcal{H} &= L^2(c(M)) = L^2(c(L^{\infty}(X))) \otimes l^2(\Gamma), \text{ and} \\ \tilde{\mathcal{H}} &= L^2(c(\tilde{M})) = L^2(D) \otimes L^2(c(L^{\infty}(X))) \otimes l^2(\Gamma). \end{aligned}$$

and define a partial isometry $v \colon \mathcal{H} \to \tilde{\mathcal{H}}$ by $v(\eta \otimes \delta_g) = 1 \otimes \eta \otimes \delta_g$. • Recall $(V_t)_{t \in \mathbb{R}}$ are defined on $\tilde{\mathcal{H}}$ by

$$V_t(\xi \otimes \eta \otimes \delta_h) = v_t(h)\xi \otimes \eta \otimes \delta_h,$$

where $v_t(g)(x) = \exp(itc(g)(x))$.

• A lemma from [2] yields that for all $x \in c(L^{\infty}(X)) \rtimes_{\mathsf{red}} \Gamma$,

$$\lim_{t\to 0} \|xV_tv - V_tvx\|_{\infty} = \lim_{t\to 0} \|JxJV_tv - V_tvJxJ\|_{\infty} = 0.$$

SQC

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

• A lemma from [2] yields that for all $x \in c(L^{\infty}(X)) \rtimes_{\mathsf{red}} \mathsf{\Gamma}$,

$$\lim_{t\to 0} \|xV_tv - V_tvx\|_{\infty} = \lim_{t\to 0} \|JxJV_tv - V_tvJxJ\|_{\infty} = 0.$$

• Using this and condition (2) in the definition of $A \not\preceq_M L^{\infty}(X)$ implies $\exists \xi_t \in \tilde{\mathcal{H}} \ominus \mathcal{H}$ such that $\|\xi_t\|_{\tilde{\mathcal{H}}} \geq \delta$ for all t > 0 and that

$$\begin{split} \limsup_{t \to 0} \|\varphi_i(u(\psi_k)z)J\varphi_i(u(\psi_k)z)J\xi_t - \xi_t\|_{\tilde{\mathcal{H}}} \\ &\leq 2 \left\|(\varphi_i(u(\psi_k)z) - u(\psi_k)z)p\right\|_{2,\mathrm{Tr}} \stackrel{i \to \infty}{\longrightarrow} 0 \end{split}$$

where Tr is the canonical trace on c(M).

• Thus

$$\lim_{i} \sup_{i} \left\| \sum_{k=1}^{n} \varphi_{i}(u(\psi_{k})z) J \varphi_{i}(u(\psi_{k})z) J \right\|_{\mathcal{B}(\tilde{\mathcal{H}} \ominus \mathcal{H})} \geq n.$$

Brent Nelson (UCLA)

Indecomposability of free nonsingular action

March 1, 2013 28 / 30

< 10P >

Thus

$$\lim\sup_{i} \left\| \sum_{k=1}^{n} \varphi_{i}(u(\psi_{k})z) J \varphi_{i}(u(\psi_{k})z) J \right\|_{\mathcal{B}(\tilde{\mathcal{H}} \ominus \mathcal{H})} \geq n$$

The binormal representation a ⊗ JbJ → aJbJ of c(M) ⊗_{alg} Jc(M)J is continuous with respect to the minimal C*-tensor norm ([1],[6]) so:

$$\lim_{i} \sup_{i} \left\| \sum_{k=1}^{n} \varphi_{i}(u(\psi_{k})z) \otimes J\varphi_{i}(u(\psi_{k})z)J \right\|_{\min}$$

$$\geq \limsup_{i} \left\| \sum_{k=1}^{n} \varphi_{i}(u(\psi_{k})z)J\varphi_{i}(u(\psi_{k})z)J \right\|_{\mathcal{B}(\tilde{\mathcal{H}} \ominus \mathcal{H})} \geq n$$

Brent Nelson (UCLA)

• Finally, the φ_i are completely positive and contractive so

$$\left\|\sum_{k=1}^{n} u(\psi_{k}) z \otimes Ju(\psi_{k}) J\right\|_{\min}$$

$$\geq \limsup_{i} \left\|\sum_{k=1}^{n} \varphi_{i}(u(\psi_{k}) z) \otimes J\varphi_{i}(u(\psi_{k}) z) J\right\|_{\min} \geq n$$

200

イロト イポト イヨト イヨト

- C. ANANTHARAMAN-DELAROCHE, Amenable correspondences and approximation properties for von Neumann algebras. Pacific J. Math. **171** (1995), 309-341.
- I. CHIFAN, T. SINCLAIR, On the structural theory of II₁ factors of negatively curved groups. arXiv:1103.4299
- U. HAAGERUP, *Injectivity and decomposition of completely bounded maps*. Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), 170-222, Lecture Notes in Math. **1132**, Springer, Berlin, 1985.
- C. HOUDAYER, S. VAES, *Type* III *factors with unique Cartan decomposition*, Journal de Mathmatiques Pures et Appliques, to appear. arXiv:1203.1254
- M. TAKESAKI, *Theory of operator algebras, II.* Encyclopaedia of Mathematical Sciences, **125**. Operator Algebras and Non-commutative Geometry, 6. Springer-Verlag, Berlin, 2003. xxii+518 pp.
- S. VAES, One-cohomology and the uniqueness of the group measure space decomposition of a II₁ factor. Math. Ann., to appear. arXiv:1012.5077